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1 Introduction

Real-time tracking of the orientation or attitude of rigidlies has wide
applications in robotics [1], helicopters [2], tele-opemtiaugmented reality,
and virtual reality [3]. Limb segment orientation can benestted through the
attachment of an inertial/magnetic sensor module to each segnuapgieted in
Figure 1. Given the length of each of the segments, thénatet orientation
based on sensor module data, and their arrangement relative amather, the
posture of the body can be determined. This method of oimmt@hd posture
estimation is desirable since it is not dependent gnaatificially generated
reference signal and does not suffer from any line of sight
restrictions [4].

Inertial/magnetic sensor modules and their associated datanglteri
algorithms are designed to be capable of estimating threeedegf orientation
over a wide area in a variety of unprepared tracking envieotsn The sensor
modules commonly contain three linear accelerometers and three ,
magnetometers. The accelerometers are orthogonally mounted aad adrare
the magnetometers. Sensor modules designed for more dynarticatapps
may also contain three orthogonally mounted angular rate rsefisouse as a
high frequency data source. Each of the triads is mountddtbat there is an §
individual sensor aligned with one of the principle axethefcoordinate frame| _
of the sensor module. Thus the total number of sensatained in modules
designed to provide data for estimating orientation in dymapplications is
commonly nine. .

In orientation estimation algorithms designed to processiaymagnetic &
sensor data, accelerometers are used to measure the gravity elattm to the
coordinate frame of the sensor module. Accelerometers allow azcura
determination of pitch and roll, but can not be used mseseotations about the™
gravity or vertical axis. Magnetometers are thus commonly tsedeasure . ,
azimuth or rotation in the horizontal plane relative to aeti’ reference. The Figure 1: Prototype body tracking
data from the incorporated sensors is normally fused usik@lman or SySteém based on inertial/magnetic
complementary filtering algorithm. Foxlin et al. describe® twommercial Sensors modules.
sensor modules containing accelerometers, magnetometers, guldr anate
sensors designed for head tracking applications [5],[6]s@efusion is performed using a complementary separate-bias
Kalman filter. Bachman et al. propose a quaternion-based eareptary filter for human body tracking [3], [7]. Thii
is able to track through all orientations without singtikssiand continuously correct for bias and drift errors st
with low cost angular rate sensors without a need foostty periods. Gallagher et al. presents a simpler complangent
filter algorithm with lower computational complexity in][8.uinge describes a Kalman filter designed for human body
tracking applications in [9]. The primary difference betweenwibek presented in this paper and that of Luinge is that
Luinge does not use magnetometers. In the absence of magte®mdrift about the vertical axis is reduced by limiting
body segment orientation using a kinematic human body mddhe. kinematic model incorporates biomechanical
constraints on the joints. This method allows calculatioacourate relative orientation between adjacent segments. The
proposed Kalman filter is useful for long periods of measient if only inclination is required. In [10], Zhu antdaz
describe a linear Kalman filter algorithm designed to smooth exceekter and magnetometer readings. Rather than
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estimating individual limb segment orientations relative fixed reference frame, the system determines joint angles in
axis/angle form using data from the two sensor modulestedwn the two segments adjacent to the joint. Kraft descri

an “unscented,” quaternion-based Kalman filter for real-time estimaf a rigid body orientation [11]. Simulation results
demonstrate the general validity of the described filter. ¥ad Yuan describe a single frame orientation tracking
algorithm that uses low cost sensor modules to take tigonaeasurements of gravity and the local magnetic field [12].
Elevation, roll and azimuth angles are sequentially calculatedh@nthéthod is limited to orientation tracking within a
hemisphere. In [13], Gebre-Egziabher et al. describe anotigle $shame attitude determination algorithm for aircraft
applications. The algorithm is based on the QUEST (QUateERTimator) algorithm [14] which was originally deségl

to determine spacecraft attitude given a set of 3-dimensiopalrkreference vectors and their corresponding observation
or measurement vectors. In the case of [13], the local magmdti@afid gravity vectors are used as reference vectors.

In the above studies with the exception of the work bygei[9], both the gravity and local magnetic field vectors
are treated as fixed references. In the case of the gravity vibet@ssumption that it is fixed leads to no difficulsese
this vector does in fact point straight down in any iaéftiame located on or near the surface of the earth. Making t
same assumption regarding the local magnetic field vector asevio lead to problems. In a typical room setting, the
direction as well as the magnitude of the local magnetic fietdov can be expected to vary due to the presence of ferrous
objects or electrical appliances. Relative weighting can be tosestuce the weight applied to magnetometer data in
comparison to other sensor information. However, slafvalout the vertical axis in the presence of a sustainetgeha
the direction of the magnetic field vector will still occur. Reithg the weight given to magnetic data does, however, make
it possible to reduce orientation errors resulting froamgients in the local magnetic field. Such weighting techsique
allowing manual adjustment of magnetometer gains are desaniffi@ld [5], and [8].

This paper describes several experiments designed to examatlessale magnetic interference caused by typical
objects and how this interference can be expected to affect the acofimmntation estimates produced using data from
inertial/magnetic sensor modules. The results provide insight the limitations of inertial/magnetic sensor module
orientation tracking. They indicate that while errors duéotal variations in a common room environment caused by
individual objects can be significant, in most cases they eaawvbided by maintaining a separation of approximately one
meter from the source of interference. The interference caysednhbined sources in a noisy indoor environment can
however be quite complex. The results also indicate that ierdighetic sensor modules can be used to track link
orientation of a mechanical arm relative to an Earth fixegfeete frame.

The remainder of this paper provides a brief background lzem presents a series of experiments. Section 2
describes the sensors used in the experiments, gives a\miefesv of magnetic fields, and magnetometer calibration
methods that can be used to deal with various types of magmketiference. Section 3 presents data from four different
experiments in which inertial/magnetic sensor modules dijeaed to controlled changes in the magnetic field, exposed
at varying distances to sources of magnetic interference, andaiseatk a robotic arm. The final section of the paper
discusses the implications of the experimental resultshiruse of inertial/magnetic sensor modules and provides a
summary.

2 Background

The following paragraphs go deeper into the theory dEntation estimation algorithms designed for
inertial/magnetic sensor modules and briefly describe thress tgh sensor modules. Specifically, the modules discussed
are the InterSense InertiaCube, the MicroStrain 3DM-G, amdMhRG 1ll. The MARG 1l was designed by the authors
and manufactured by McKinney Technology. Basic background oantiéent magnetic field of the Earth and how it is
distorted by ferrous objects and electrically powered deviEdhen provided. Methods of calibrating magnetic field
variations are then discussed.

2.1 Inertial/Magnetic Sensor Modules

Inertial/magnetic sensor modules have be been fabricated byirahthtry and university research laboratories.
Filtering algorithms designed for these sensor modukebased on inertial and magnetic quantities directly relatdteto t
motion and orientation of a sensor module. Algorithrasighed for use with inertial/magnetic sensor modules peodu
accurate orientation estimates by taking advantage of the coemikem nature of the sensed quantities in order to
determine orientation.

For a static or slow moving rigid-body, accelerometer triaippuat can normally be averaged (or low pass filtered) for
a short period of time in order to measure the componghnthe gravity vector in the sensor coordinate frame.
Determination of the relationship of the measurement in theosem®rdinate frame to the gravity vector in Earth



in press1EEE Robotics and Automation Magazine

coordinate frame allows estimation of orientation relativéhto horizontal plane. However, in the event that the sensor
module is rotated about the vertical axis, the projectionhef gravity vector on each of the principle axes of the
accelerometer will not change. Since the accelerometer triad can ne¢deéousense a rotation about the vertical axis, an
orthogonally mounted triad of magnetometers can be use@asure the local magnetic field vector in body coordinates
and allow determination of orientation relative to the verti€als, combining magnetometer data with accelerometer data
provides a complete method for estimating the orientation.

Alternatively, assuming the initial orientation of the baslknown, integration of the output of a triad of ogbnally
mounted angular rate sensors provides another methotdroétsg orientation. If the rate sensors are susceptbhoise
or bias effects, as is the case for the small low cosbeensed in inertial/magnetic sensor modules, these estimates
become useless after a short period. To avoid lag or ow#rghaynamic applications, many inertial/magnetic sensor
filtering algorithms combine high frequency angular rate @edata with low-frequency accelerometer and magnetometer
data in a complementary manner to produce continuously acouietéation estimates in real-time.

Based on the work of Foxlin, InterSense Inc. developedhearteted a sensor module called the InertiaCube2. The
primary application for this module is head tracking. Manturer's literature indicates that the InertiaCube? is capaibl
measuring angular rates, linear accelerations, and the local mafjekticalong three axes. Dimensions for the
InertiaCube2 are 29 mm x 24 mm x 34 mm. Orientatiomests are made by a proprietary extended Kalman filter [5],[6].
Manufacturer’s literature lists an accuracy of 1.0 degree angdate rate of 180 Hz.

The 3DM-G Gyro Enhanced Orientation Sensor also congatniad of orthogonally mounted angular rate sensors, a
triad of orthogonally mounted accelerometers, and a triad thbgonally mounted magnetometers. Sensor data is
processed by a proprietary filtering algorithm runningaonembedded microcontroller. Manufacturer’s literature kst
accuracy of +/- 5 degrees for arbitrary orientations. UntlilkeelnertiaCube2, unscaled as well as scaled raw data output is
available from this unit. The update rate is 76.6 Hz. Uniedsions are 65 mm x 90 mm x 25 mm.

The MARG Il sensor module shown in Figure 2 is a resea —
prototype developed by the Modeling, Virtual Environmerdad
Simulation (MOVES) Institute at the Naval Postgraduate Schif).
Primary sensing components for this unit include TdR{B-L43 ceramic
rate gyros, Analog Devices ADXL202E micromachined acceleromet
and Honeywell HMC1051Z and HMC1052 one and two-a
magnetometers. The MARG Il sensor module incorporates a Té
Instruments MSP430F149 ultra-low-power, 16-bit RISCchaecture
microcontroller. Overall, dimensions are approximatelyni x 30 mm x
25 mm. The sensor module includes a magnetic set/reset ¢radncel g
magnetometer temperature drift and avoid magnetic saturatfeotsef | _. - :
Various complementary and Kalman filters based on a quaterniéndUre 2: MARG lil inertial/magnetic
representation of orientation have been used to processGVIARsensor ~ S€Nsor module.
data [3], [16]. Estimation accuracy has been measured to bethatiesne
degree.

el

2.2 Magnetic Field Variations

Magnetic fields surround permanent magnets or electrical condudibey can be visualized as a collection of
magnetic flux lines. Flux lines are said to emanate from g&hhpole and return to a ‘south’ pole in a magnet. Flux
density, or magnetic induction, is a measure of the numbé@woflines passing through a given cross sectional area.
Magnetic field strength is a measure of force produced by anieleanrent or a permanent magnet. Magnetic field
strength decreases with the cube of the distance from thees®hile magnetic field strength and magnetic flux density
are not the same, they are equal within a vacuum. Magneticeakility is a constant of proportionality that exists
between magnetic induction, and magnetic field intensity. Itbeaniewed as a measure of how easily magnetic lines of
flux will pass through a given material. In the preserfcancobject made of a material with a relatively high permeapility
magnetic field lines will bend toward or be attracted to theabtbThus distortion can be expected to occur near large
ferrous objects [17].
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Distancel Distancs The direction and magnitude of ambient magnetic field at a
1 given point is the vector sum of all magnetic fields presgnthat
(F.Sclr;) (20(?;“) point. The dominate field in most cases is that of the Battith

1€ e varies from approximately 0.23 to 0.61 Gauss. However tiadél
(Gauss)| (Gauss) magnetic fields caused by conductors through which a cuisent

D

Can Opener 1.60 0.27| flowing and magnets also contribute to the total field agiven
Electric Saw 1.20 0.25 | position. All contributing fields will be distorted bgbjects made of
Vacuum Cleaner 0.75 0.20| materials with a high magnetic permeability.

Electric Shaver 0.65 0.10 In an indoor environment, sources of magnetic interferenee ar

constantly present and can include common items such as ®ympu

Mixer 0.61 0.11 monitors, fluorescent lighting and powered-up electricalngiiinside
Hair Dryer 0.50 0.07 | walls. Table 1 lists the fields generated by some commonamgpk.
Electric Drill 0.20 0.03 In some cases the strength of the generated field exceedd that o
Portable Heater 0.15 0.04| Earth within a short distance of the appliance. If a magrsetnsor is
Fluorescent Light Fixture 013 0.04| Placed in this nearby area the gene(ated field can be expediadeo
Fan (range Hood) 0.09 003l & effect on the direction and magnitude of the field measuyreteb

sensor. Unless the field generated by the appliance happebs t

Television 0.07 0.02 | aligned with that of the Earth, the reported direction mdll be that of

the Earth’s magnetic field. In a room size environment sueldsfi

would constitute local variations from the average fielchsroom. It

is variations of this type and their effect on the orientagstimates
produced by inertial magnetic sensors with which this pdper
concerned.

Table 1: Common magnetic field magnitudes
in Gauss at 15 and 30 cm adapted from [18].

2.3 Magnetic Field Calibration

Magnetic distortions caused by ferrous objects that hawed lbcation and orientation relative to the magnetometers
being used to determine the direction of the local magnetic Yietdor can be separated into two categories. These
categories ardard iron and soft iron effects. Hard iron objects are permanently magnetized. Softabjects are un-
magnetized unless under the influence of a magnetic field.

Hard iron effects add a constant offset to the vector meabyrethgnetometers making up an orthogonal triad. They
can be compensated for in the horizontal plane by rotatmgtignetometers together with the involved hard iron objects
and sampling at enough points in a circle to determine tisetofélative to the horizontal plane. Determination of all
components of the offset requires rotation in more thanpteme. Unlike hard iron effects, soft iron effects dopmotiuce
a constant offset. Soft iron influences are dependentientation [19]. Thus correcting for soft iron effectseofrequires
the construction of a heading dependent lookup table [2Bist@uction of a three dimensional lookup table is diffiani
time consuming. Thus, in a strap-down navigation systaagnetic readings are usually projected onto the horizontal
plane using a tilt sensor before corrections are made.

In general, calibration is best approached by removing aftyiren materials and dealing with hard iron effects
directly. The magnetic properties of many materials are actuabgtimeen those of soft and hard iron and change over
time. During a calibration performed at any given time, éffects of suctsub-permanent materials will appear to be
permanent like hard iron. However, since the effects observedoarteuly permanent, calibration procedures must be
repeated on a periodic basis [17].

It should be emphasized that the above discussion of calibfatuses only on effects caused by objects that have a
fixed position and orientation relative to a magnetic sendora tracking application, moving inertial/magnetic senso
modules can be expected to constantly change position amdatioa relative to ferrous objects and other sources of
magnetic distortion. These magnetic distortions will ndy ahange from position to position, but can also be erpleitt
change over time as the configuration of the tracking area détseifges. The nature of these distortions and their possible
effects on orientation estimation algorithms designed Hertial/magnetic sensor modules is the primary focus of this
paper.

3 An Experimental Investigation

Inertial/magnetic sensor module filtering algorithms are dé@enon sensing the local magnetic field to eliminate
drift in the azimuth portion of orientation estimates. ébithat variations in the direction and magnitude of the embi
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magnetic field can be expected to occur as a result of the presdiecmo$ materials and electrical appliances operating
in the tracking environment, what type of estimation eroans be expected and how large can the estimation errors be
expected to be? Knowing the answer to this questiondesvnsight into when inertial/magnetic sensor modulesbean
expected to work properly with minimal estimation error artht type of algorithm modifications could be expected to
improve performance. The experiments described below atterapsteer this question. In the first series of experiments,
several types of sensor modules are subjected to controbedieh in the direction and strength of the sensed magnetic
field in order to characterize the resulting orientation edtton errors [21]. The second sets of experiments involve
exposing a triad of magnetometers to magnetic fields gendmateatious electrical appliances and ferrous objects in order
to examine the magnitude of the errors and the range at wWtaghoccur. In the last set of experiments, a robot arm is
tracked using inertial/magnetic sensor modules and an optchirig system.

3.1 Errors Caused by Change in Magnetic Field Dire@on

In the first series of experiments, magnetic field vanegiovere applied to the three types of sensor modules to
measure the deviation in their orientation estimates due tehhege in the sensed magnetic field. The change was
generated using a Helmholtz coil. The sensors were placee it&ccoil to observe how the orientation estimate would
change as changes to the local direction of the local magnetioviéetdapplied. The three different sensor modules tested
were the MARG llI, the MicroStrain 3DM-G, and the IntenSe InertiaCube2.

Initial calibration data for the Helmholtz coil was obtainedamplying different currents to it and measuring the
induced field with a Hall probe. This initial data allowed diwmis to be made regarding how much current was necessary
to produce the desired magnetic inductions to be appligdetahree different inertial/magnetic sensors. The selected
magnetic field level was chosen to be on the order of thin'Edviain field. The voltage that was necessary to reach the
required magnetic induction was calculated using linear $e@stre fit.

During the experiments, the Helmholtz coil was positioneattempt to generate a magnetic induction that would be
reversed approximately 180° in azimuth from the Earth’smatg field. In most cases, the actual measured change ranged
between 160° and 180° due to imprecise alignment of theralative to the local magnetic field vector. Each sensor
module was placed in eight different orientations witthifield generated by Helmholtz coil. For each of the oriemati
the coil was energized to observe the type and magnitudean§etthat occurred in the orientation estimate produced by
the sensor and its associated filtering algorithm [21].

The data plots from these experiments show a period of megghe Earth’s ambient magnetic field, followed by a
period in which the Helmholtz coil was energized for 2@@cseconds. Following the energized period, the coil was de-
energized and the plots reflect the return to sensing oelanfbient field of the laboratory. The change in the dinectio
and magnitude of the magnetic field vector is depicted indi@urEnergizing the coil caused the azimuth direction of the
magnetic field vector to change from 0° to 180°. There wasigroficant change in thg (East) component of the vector.
Since the coil was level, thecomponent of the magnetic field vector also remained unchaRgedto energizing of the
coil, the magnetic field vector pointed North with a dip argglow the horizontal of 76°. While the coil was energittesl
magnetic field vector pointed South with a negative elevatigeaof 32°. Thus, in this series of experiments, miy o
were the sensor modules exposed to a full reversal cdzimeuth direction of the magnetic field vector. Depending o
their initial orientation relative to the magnetic field, tlemsor modules were also exposed to a change in pitchorroll
some combination of the two totally approximately 44°.

For visualization purposes, all orientation estimates pexdiby the sensors are displayed in Euler angle formeln th
experiments presented here, the sensor modules were orieatétbith-East-Down reference orientation with xhaxis
of the module pointing towards the local North, yhaxis pointing East and tleaxis pointing down. At no time was a
sensor actually rotated before, during, or after the apigiicaf the altered magnetic field.
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Figure 3: Depiction of total change in the direction and mgnitude of the magnetic field vector
(East is directly out of the page).

Figure 4 and Figure 5 show the responses for the MAR@&ntIMicroStrain 3DM-G respectively when the magnetic
field was altered using the Helmholtz coil. In Figure 4, th&R Ill was placed within the Hemholtz coil with an initial
orientation of 2° roll, 10° yaw, and 3° pitch. Caliboatiof the MARG Il does not account for non-orthogonalitghin
the magnetometer triad. Thus, small changes and hysteresis $@enhia the roll and pitch estimates and the yaw estimate
changes by an amount that is slightly less than the charggmuth that occurred in the direction of the magnetic field.
The smooth response of the MARG Il filtering algoritiisndue to the particular gain values used in the experirfrent.
Figure 5, the MicroStrain 3DM-G had an initial orientat@fr° roll, 13° yaw, and 0° pitch. Energizing the coil sad a
165° change in the yaw estimate produced by the sensor endthis change was equal in magnitude to the measured
change in azimuth. No significant changes were observeckimnothand pitch estimates. The tuning of the orientation
estimation algorithm provides an extremely sharp respongetohange in the magnetic field direction. Both the MARG
and MicroStrain sensors responded to the change in the seraptetic field by altering the yaw portion of their
orientation estimates by an amount that was equal to meaaziradth change produced by the Helmholtz coil. Neither
showed significant change in their roll and pitch estimdespite the fact that the direction of the magnetic field had
changed both pitch angle and azimuth angle as depicted inreRgurhis was true regardless of the orientation of the
sensor modules relative to the coil. This is significantesiit indicates the errors due to magnetic variation are restricted
only to the horizontal plane. The estimates of pitch aricarelnot affected by changes in the magnetic field direction for
the sensors and algorithms tested [21]. This is inraento some orientation algorithms such as the QUES]T \uhere
such a change in the direction of the magnetic field wilkeaan error in both azimuth and pitch.

Pitch Rol aw

MARG Sensor
T@gt 1 - (+x north) (+z down)

@ o
o O

&
oo

. I}n«g‘le {Degrees)
o
i

Time (Seconds)

Figure 4: MARG Il sensor response to 180° azimuth chargin the magnetic field direction.
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Figure 5: MicroStrain 3DM-G response to 180° azimuth changa the magnetic field direction.

Figure 6 shows the response of the InertiaCube?2 to the s@gnetic variations as used in the experiments depicted
in Figure 4 and Figure 5. Like the other sensors trentation estimate changes only in azimuth. However, examinaftio
Figure 6 indicates that unlike the other sensors, the a&stihorientation produced by the InertiaCube?2 algorithamgéd
by approximately 90° instead of 180°.

In order to investigate the response of the InertiaCubeReiyradditional experiments were performed. In Figure 7,
the sensor was again left in the same position within the tdimcoil. The coil was energized for approximately 30
seconds. Unlike previous experiments, during the time wihemeagnetic field was changing the sensor was physically
tapped. This caused the estimated azimuth to proceed thaoctligmge that is similar to that observed with the ather
sensor modules. Euler angle azimuth is bounded betweénah80-180°. Though the change is expressed as -180°, it is
equivalent to the positive 180° change seen with the othesewsor modules. The knee seen in the trailing edge of Figure
7 is most likely the result of non-zero angular rate readiegsed by tapping of the sensor module while the coil was
being deenergized. These results indicate that the filteringithlgoof the InetiaCube2 will not accept changes in its
orientation estimate without some accompanying non-zero redddingthe angular rate sensors.
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Figure 6: Undisturbed InertiaCube 2 response to 180° changa the magnetic field direction.
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Figure 7: Disturbed InertiaCube 2 response to 180° change the magnetic field direction.

Based on the results of experiments described above, it apghatramlike active magnetic trackers which suffer
estimation errors in all dimensions due to magnetic variaf@2is variations in the direction of the local magnetic field
only cause estimation errors in azimuth or the horizontal gihe. magnitude of the errors appears to be equal to the
amount of deviation of the local magnetic field in theizmntal plane. No significant change was observed in the gitdh
roll estimates produced by the three tested algorithms. Tdygssrimental results indicate that the dip angle itself or
changes in the dip angle of the local magnetic field vector habeaiing on the accuracy or amount of variation seen in
orientation estimates produced using inertial/magnetic semsdule data.

3.2 Variations Caused by Common Objects

To determine the magnitude of azimuth errors that can be expectetyjcal indoor environment, two types of
experiments were performed. Initial experiments measured digaetic field variation experienced at varying distances
from several test objects. Later experiments measured the chanljfedtion of the magnetic field vector at several
positions in a magnetically noisy laboratory. The MARGiltéring algorithm utilizes a normalized magnetic field vector
of unit length and is thus not affected by changes inghgth of the magnetic field vector [3]. Based on manufacture
literature, the algorithms associated with the InertiaCude3&M-G are similar in this regard. Therefore, the eixpental
results presented here concentrate on the changes in the dicddtie local magnetic field and not changes in magnitude.
The experiments described above establish that changke lirection of the magnetic field orientation result omly i
azimuth errors for the orientation estimation algorithmo@ated with the tested sensor modules. Therefore, in the
experiments described in this section, only magnetic dewiatithe horizontal plane is examined.

To measure the magnetic deviation in the horizontal plane caysetbobjects, a “track” was constructed using
non-ferrous materials and set so that the orientation @ieatial/magnetic sensor module could be held constant as the
sensor was moved through successive positions approachimglgact. The sensor module was placed at 18 locations
with each successive location being 10 cm closer to the tesitolyj the final position the sensor module was withia on
centimeter of the test object. This set-up allowed the direcfidhe magnetic field vector to be measured since thersenso
module orientation was kept constant. The test objeclisdad:

e Computer monitor (CRT type), powered and un-poweredsstat

« Simple appliance (small space heater with fan), powered apdwered states
e Electrical power supply, powered and un-powered states

¢ Metal filing cabinet

« Mobile robot, un-powered, powered, and motor engaged.

The MicroStrain 3DM-G sensor module is factory calibrated almivs access to scaled sensor output from each of
the nine sensors in the module. The magnetometer triackiBRM-G sensor was used to measure the magnetic field
direction in these experiments.

Prior to examination of the deviations caused by the tgstisha baseline was established by measuring the change
in magnetic field direction with no object present. In the lissealase, the direction of the magnetic field in the horizontal
plane deviated less the 1.6° as the sensor module was movadraaiof 180 cm down the test track. This deviation is
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attributed to noise in the ambient magnetic field of the laboratComparison of these baseline deviations for each
sampling position to the deviations that occurred wharh eof the test objects was present allows a more thorough
understanding of the effects each object has on the magnetic Tiedd baseline was sampled before and after the
experiments were conducted. This action helped to insure tlsagmificant changes had occurred in the ambient magnetic
field of the laboratory during the course of the experiment

Figure 8 contains two sub-plots of data from experimantshich a CRT computer monitor was the test object. In
each sub-plot, baseline average deviations are displayedwilbntiie average deviations that occurred when the monitor
was present. The top sub-plot displays the average dexgdtiat occurred when the monitor was un-powered. Therbott
sub-plot displays the average deviations with the monitoretl on and connected to a PC. The error bars represent the
standard deviation of the data obtained at each positionmElgaetic field showed approximately the same amount of
deflection whether the monitor was attached to a PC and pdwereor turned off. The standard deviations in both
experiments are small and can be attributed to measuremesat imulicating the deviation was a DC effect. Some impact
from this appliance can be observed to almost 40 cm of sepadidiance. In both cases, the computer monitor causes a
maximum average deflection of 10.5° in the magnetic field rel&ditiee horizontal plane.

Figure 9 shows two sub-plots of data from experimentshith a portable heater was used as a test object. In the
first experiment both the heater fan and heating elements wele tift second experiment both the fan and the heating
elements were on. Examination of the two sub-plots indici@sthe average amount of magnetic field deviation is
significantly greater when the heater is turned on andasesedramatically as the sensor is brought in close proximity
the appliance. The standard deviations of the data taken at ed@n@iso increase significantly as the sensor is brought
closer to the running heater. This fluctuation is mostljildue to the use of alternating current to power the aglian
With the heater in a powered off state, the largest avegatidn is 20.5°. With the heater turned on, the largesiage
deviation is nearly 90°. In both cases deviation causethéyeater did not begin to occur until the sensor module was
within 30 cm of the heater.
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Figure 8: Magnetic field vector deviation in the horizontd plane versus distance from a PC monitor in both un-
powered (top) and powered (bottom) states.
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Figure 9: Magnetic field vector deviation versus distance &im an appliance (space heater) in both un-powered (top)
and powered (bottom) states.

Figure 10 shows two sub-plots of data from experimentahiith an electrical power supply was used as a test
object. In the first experiment the power supply is offtHe second experiment it is turned on and supplying pdie
two sub-plots are very similar. The standard deviationthefdata taken at each position are relatively small again
indicating the deviation is DC in nature. In both subigplthe maximum average deviation is between 60° and 70°. The
deviation due to the presence of the power supply begioscur at a distance of nearly one meter.

Figure 11 presents the deviation in the sensed magnetioséetdr as the magnetometer triad of the sensor module
approached a large metal filing cabinet. The deviations far tst object are the largest of any observed in the
experiments described in this paper. Large standard dmsafor the data samples for each of the positions are not
observed indicating that the magnetic field deviation was canistamature. The maximum deflection caused by the filing
cabinet is 99.5° and begins at a distance of 1.5 meters.
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Figure 10: Magnetic field vector deviation versus distancadm an electrical power supply in both un-powered (top)
and powered (bottom) states.
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Figure 11: Magnetic field vector deviation versus distancadm a metal filing cabinet.

The final test object presented is a Nomad Scout mobile.ragnetic deviation due to the presence of the robot
was examined with the robot in three different states. Tinese states correspond to the three sub-plots in Figurehg2
bottom sub-plot displays the deviation induced by thmtevhen it is in an un-powered state. In the middlegdah all
electronic systems of the mobile robot were energized wittexiteption of the motor used to move the robot. The data
displayed in the top sub-plot were collected while all r@ystems were powered and the motors were engagedofddte r
was placed on a stand so that its wheels could rotate freelynd@xiemum amount of average deviation observed for the
robot is about 9°. This includes the case in which theoraavere engaged. The standard deviation of the data for each
position is relatively small. No deviation is observeddrel/a distance of 40 cm.
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Figure 12: Magnetic field vector deviation versus distancadm a mobile robot in a power-off (bottom), systems-on
(middle) and motor-engaged (top) states.

Another set of experiments was conducted to examine the arabwariation that can be expected to occur in a
laboratory environment in which numerous sources of magneige are present. In these experiments, the azimuth
direction of the magnetic field was measured at 25 positioh8 am intervals along a straight line with the sensor eodu
orientation being held constant. As the sensor moduleyheiad to collect measurement data was moved it came within

11
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close proximity to numerous pieces of lab equipment samatiusly. The equipment included computer monitors, psinter
mobile robots, servo control stations, and other miscellanid equipment. Figure 13 contains sub-plots for twaoght

line samples. In the upper sub-plot, the azimuth directioth® magnetic field varies approximately 16°, with the
maximum change between two adjacent positions being 18.tfe lower sub-plot, the azimuth direction of the magnetic
field varies slightly less than 13°. The average diffeesfrom position to position is less than three degredsofh trials.

The accruing difference in the magnetic azimuth direction seémeinipper plot indicates the presence of a large scale
magnetic disturbance in the lab.

Overall, experiments in which the magnetic field variattansed by individual test objects was examined indicate
that when inertial/magnetic sensor modules are separated bstamo#i of one meter or more from most common
appliances and ferrous objects the amount of azimuth erroceddoy those objects will be negligible. The amount of
variation caused by different types of objects can vary sogmifly. The experimental results demonstrate that while
inclination estimates can be expected to remain valid in clos@ptpxo objects causing distortions in the local magnetic
field, in some cases the azimuth estimates produced by thHemepied algorithms had very little relation to the true
orientation of the sensor module and can vary by as mutBQgs In other tests, azimuth estimates varied less tliat 10
Experiments in which sensor modules were exposed to neulsiplirces of distortion simultaneously in a crowded
laboratory environment, show that azimuth estimates produsiad a sensor module with a constant orientation can be
significantly different for closely spaced positions. Hmer, on average, differences in estimated azimuth from one
position to another nearby position are much smaller.
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Figure 13: Ambient magnetic field azimuth direction sampledat 10 cm intervals in a laboratory.
3.3 Tracking a Robot Arm

The final set of experiments described in this paper aligrassto determine if inertial/magnetic sensor modules can be
used to accurately track the orientation of the links ofttr@arm made of ferrous materials. In these experiments a
SCORBOT-ER Il robot arm and three MicroStrain 3DM-G wet#ized. The experiments described in section 3.1
established that the response of the three different sensluleado magnetic variations is essentially the same. In these
tracking experiments, one 3DMG-GX1 was securely attached to edctoflithe arm. While robot encoders provide
incremental joint angle readings, use of these angles to alriaimation estimates relative to an earth fixed reference
frame requires forward kinematics and calibration, and the accafahg orientation estimates cannot be ascertained for
this robot arm. As a result the arm was also tracked @asf@galysis optical tracking system as depicted in Figuréiig.
Qualysis system can be used to perform passive optic thegree-of-freedom position tracking and six degree-of-
freedom tracking of designated rigid bodies on which fassjve markers are mounted. Manufacturer’s literature states
that position accuracy is 0.1% of the field of view. Theotodrm was contained in a one square meter tracking volume.
The Qualysis system utilized seven proflex cameras poditiar@ind the tracking volume. In the experiments discussed

12
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here, a total of 17 passive markers were used to tracloigop of the outboard end of each link and the ogiggont of

the inertial/magnetic sensor module attached to each link. E&clvdim defined as a rigid body by placing four markers on

the surface of the attached inertial/magnetic sensor. The gepewiter of these four markers served as the origin of the
local coordinate system of each segment. Following calibrati@ximum residual error for all cameras was less than

1.127 mm. These calibration results indicate that the systertrac&ing to 1mm accuracy as would be expected given the
size of the tracking volume. Update rate for the optical trackystem was 60 Hz. Given this accuracy, data produced by
this system was treated as a reference in these experiments.

Figure 14: SCORBOT-ER III robot arm instrumented for track ing with both inertial/magnetic sensor modules and
an optical tracking system.

Figure 15 shows a comparison of the orientation estinpateiced using an inertial/magnetic sensor module and an
optical tracking system while simultaneously tracking theotrohrm. During the experiment, the robot arm was
programmed to repeatedly trace an inclined square pattern sviéimdt effecter. Due to a limited number of degrees of
freedom in the arm, the programmed pattern did not requyrefathe tracked arm segments to roll. In Figure 15, yadv an
pitch are shown for the most outboard end inertial/mageensor. Examination of the Figure 15 shows that tratiking
technologies produced very similar motion plots. Maximugady state difference between the orientation estimates
produced using inertial/magnetic sensors and optical tradkidgss than 2.5° in both sub-plots. This accuracy was
achieved by the inertial/magnetic sensors despite the largebugenature of the material o f which the robot arm was
constructed and the presence and operation of severalsetors used to position and move the arm.
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Figure 15: Comparison of yaw and pitch orientation estim#es for a robot arm segment produced by an optical
tracking system and an inertial/magnetic sensor module
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4 Conclusions and Discussion

The direction of the local magnetic field vector can be alteredhéyptesence of operating electrical appliances or
objects made of ferrous materials. The assumption made byatidengéstimation algorithms that the direction of the local
magnetic field is static makes the algorithms susceptibleréoseas the sensor modules are moved from one position to
another within a tracking volume. In the algorithms testeel etrors appear only in the azimuth portions of the otienta
estimates produced. These errors will be roughly equal inaitteetamount the magnetic field deviates in the horizontal
plane from the original reference.

The amount of deviation caused by appliances and ferrojeste can range from very small to very large. The
horizontal deviation of the magnetic field was measured duersl common objects. Maximum deviation ranged from
10.5 degrees to nearly 100 degrees. Experimental data presamtédicates that such deviations can be largely avoided
by maintaining a distance of approximately one meter fromdhecs of interference. Only one of the objects caused a
horizontal plane deviation at a distance of more than one metathif object, horizontal plan deviations did not exceed 4
degrees when at a distance of more that one meter. For margy alfjticts, no deviation was observed beyond a distance
of a half meter. However, in an indoor environment amimig numerous sources of interference, it can be difftoult
determine which objects are the major contributors to magfietit deflections and the magnetic field can vary
significantly between closely spaced positions.

Despite all the above, the tracking experiments indicate riegtidl/magnetic sensor modules can be used to track
posture with an accuracy that is comparable to optical trgcKine accuracy of the orientation estimates while tracking a
robot arm using data from inertial/magnetic sensor moduldisates that such modules can be used to accurately track
orientation in environments and applications in whicarapng motors and ferrous objects are present. Howeiven the
current state of the art of orientation estimation algoritdesigned to process inertial/magnetic sensor module data, they
should not be used in an application without first itigaging the nature of the magnetic field in the environmemthich
they will utilized. While Rotenberg et al. have begun theestigation of modified algorithms designed to alleviate the
effects of magnetic variations in [23], further work is needgus work should include an investigation of the ufe o
arrays of sensor modules placed at slightly different positiand a method of estimating the relative amount of
interference to which each individual module is exposed.

The findings and conclusions in this report are thosthefauthors and do not necessarily represent the views of t
National Institute for Occupational Safety and Health.
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of a Quaternion-Based Kalman Filter for
Human Body Motion Tracking
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Abstract—Real-time tracking of human body motion is an im-
portant technology in synthetic environments, robotics, and other
human—computer interaction applications. This paper presents
an extended Kalman filter designed for real-time estimation of
the orientation of human limb segments. The filter processes data
from small inertial/magnetic sensor modules containing triaxial
angular rate sensors, accelerometers, and magnetometers. The
filter represents rotation using quaternions rather than Euler
angles or axis/angle pairs. Preprocessing of the acceleration and
magnetometer measurements using the Quest algorithm produces
a computed quaternion input for the filter. This preprocessing
reduces the dimension of the state vector and makes the mea-
surement equations linear. Real-time implementation and testing
results of the quaternion-based Kalman filter are presented.
Experimental results validate the filter design, and show the
feasibility of using inertial/magnetic sensor modules for real-time
human body motion tracking.

Index Terms—Inertial sensors, Kalman filtering, magnetic sen-
sors, motion measurement, orientation tracking, pose estimation,
quaternions, virtual reality.

1. INTRODUCTION

OTION tracking is a key technology in synthetic envi-
Mronments, robotics, and other applications that require
real-time information about the motion of a human. A number
of motion-tracking technologies have been developed for human
motion capture in virtual reality and biomedical applications,
including mechanical trackers, active magnetic trackers, optical
tracking systems, acoustic, and inertial/magnetic tracking sys-
tems. Most are dependent on an artificially generated source and
are thus range-limited and susceptible to interference and noise.

Mechanical tracking systems can be placed in two separate
categories. Body-based systems use an exoskeleton that is at-
tached to the articulated structure to be tracked [1]. Goniometers
within the skeletal linkages measure joint angles. Ground-based
systems attach one end of a boom or shaft to a tracked object and
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typically have six degrees of freedom (DOFs) [2]. Ground-based
systems normally only track a single rigid body, but have the ad-
vantage of being able to provide haptic feedback.

Practical optical tracking systems can also be separated into
two basic categories. Pattern recognition systems sense an arti-
ficial pattern of lights and use this information to determine po-
sition and/or orientation [3]. Such systems may be “outside-in”
when the sensors are fixed and the emitters are mobile, or “in-
side-out” when sensors are mounted on mobile objects and the
emitters are fixed. Image-based systems determine position by
using multiple cameras to track predesignated points on moving
objects within a working volume. The tracked points may be
marked actively or passively [4], [5].

Active magnetic tracking systems determine both position
and orientation by using sets of small orthogonally mounted
coils to sense a set of sequentially generated magnetic fields.
The sequentially emitted fields induce current in each of the
sensor coils, allowing measurement of orientation. Changes in
total strength across the sensor coils are proportional to the dis-
tance from the field transmitter and can be used to measure po-
sition [6].

Ultrasonic tracking systems can determine position through
either time-of-flight and triangulation or phase-coherence.
Phase-coherence trackers determine distance by measuring the
difference in phase of a reference signal and an emitted signal
detected by sensors.

Body tracking using inertial and magnetic sensors is a rela-
tively new technology. Inertial/magnetic tracking is appealing
due to a lack of dependence on an artificially generated source.
It thus does not suffer from range limitations and interference
problems of sourced technologies. All delay or latency is due to
data processing and transmission. The availability of low-cost,
small-size micro-electro-mechanical systems (MEMS) sensors
has made it possible to build wrist-watch-sized, self-contained
inertial/magnetic sensor modules [7], [8]. These modules can
be used to accurately track orientation in real time. Attachment
of such sensor modules to each of the major limb segments of
a human makes it possible to independently determine the ori-
entation of each segment relative to an Earth-fixed reference
frame. The human model is constructed from multiple indepen-
dently oriented limb segments that are constrained by their at-
tachment to each other. Relative orientation between limb seg-
ments is not determined or needed.

A naive approach to inertial orientation tracking might in-
volve integration of angular rate data to determine orientation.
However, this solution would be prone to drift over time due to

1552-3098/$20.00 © 2006 IEEE



YUN AND BACHMANN: QUATERNION-BASED KALMAN FILTER FOR HUMAN BODY MOTION TRACKING

the buildup of bias and drift errors. In order to avoid drift, in-
ertial tracking systems make use of additional complementary
sensors. Commonly, these sensors include triads of accelerome-
ters and magnetometers for respectively referencing the gravity
and magnetic field vectors. Measuring the gravity vector in the
sensor coordinate frame using accelerometers allows estimation
of orientation relative to the horizontal plane. However, in the
event that the sensor module is rotated about the vertical axis, the
projection of the gravity vector on each of the principal axes of
the accelerometer triad will not change. Since the accelerometer
triad can not be used to sense a rotation about the vertical axis,
magnetometers are used to measure the local magnetic field
vector in sensor coordinates and allows determination of ori-
entation relative to the vertical. The data from the incorporated
sensors is normally fused using a Kalman or complementary
filtering algorithm. It should be noted that data from low-cost
MEMS accelerometers cannot be double-integrated for an ex-
tended period of time to determine position, due to a quadratic
growth of errors.

This paper describes the design, implementation, and experi-
mental testing of an extended Kalman filter (EKF) for real-time
tracking of human body motion. In order to produce 3-D orien-
tation estimates relative to an Earth-fixed reference frame, the
filter uses input data from a sensor module containing a triad of
orthogonally mounted linear accelerometers, a triad of orthogo-
nally mounted angular rate sensors, and a triad of orthogonally
mounted magnetometers. Quaternions are used to represent ori-
entation to improve computational efficiency and avoid singu-
larities. In addition, the use of quaternions eliminates the need
for computing trigonometric functions. The filter continuously
corrects for drift based on the assumption that human limb ac-
celeration is bounded, and averages to zero over any extended
period of time. A first-order linear system is used to model
human body limb segment motion. The QUEST algorithm is
used to preprocess accelerometer and magnetometer measure-
ments, resulting in a significant simplification of the Kalman
filter design. The filter is experimentally validated using actual
sensor measurements.

The primary contributions of this paper are:

 analysis that determines that a simple motion model based
on a first-order linear system is sufficient for tracking
human limb segment orientation;

» an EKF designed for tracking human limb segment orien-
tation that fuses a precalculated quaternion input with an-
gular rate data;

» experimental results validating that filter performance is
adequate for human posture tracking applications.

The paper is organized as follows. Section II provides an
overview of related work, and contrasts that with the approach
described in this paper. Section III gives a brief description of
the MARG sensors used to obtain experimental data. Section IV
presents the process model of the Kalman filter for human body
motion tracking. Section V describes two approaches to Kalman
filter design. Section VI describes implementation issues of the
Kalman filter with a focus on how the nonlinear process model
was first linearized and then discretized. Experimental modeling
of the process noise covariance matrix and the measurement
noise covariance matrix is also detailed. Section VII reports the
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MATLAB simulation and offline testing results of the Kalman
filter. Section VIII describes the real-time implementation of the
algorithm and testing results. The final section provides a sum-
mary and conclusions.

II. RELATED WORK

Many studies of human motion tracking using inertial sensors
have been performed. Depending on the type, number, and con-
figuration of sensors used, some studies are limited to tracking
two degrees of orientation in a plane, while others track 3-D
orientation. Algorithms have also been designed to track limb
segment orientations relative to each other or calculate joint an-
gles, as opposed to estimating the orientation of a limb segment
relative to an Earth-fixed reference frame.

A study of human motion tracking using accelerometers
alone was reported in [9]. During motions involving small
linear accelerations, a set of triaxial accelerometers was used
to determine joint angles. During motions accompanied by
higher accelerations, a technique is described that involves the
use of two sets of triaxial accelerometers on a single rigid body
to differentiate gravitational acceleration from motion-related
linear acceleration. Though the effects of these geometric
sensor fusion techniques are depicted, there is no comparison
with truth data. The use of magnetometers is mentioned, but
not discussed. Rehbinder and Hu [10] describe an attitude
estimation algorithm based on the use of angular rate sensors
and accelerometers. In this paper, drift in heading estimation
was unavoidable due to a lack of additional complementary
sensors, such as magnetometers. Thus, only two DOFs of
orientation are tracked. Sabatini et al. [11] used a single sensor
module containing a biaxial accelerometer and one gyroscope
to perform gait analysis and measurement. To measure incline,
distance, and speed, the method exploits the cyclical features
of human gait. Transition from one gait phase to the next is
determined using gyroscope data. Acceleration data is double
integrated during the swing phase to determine position and
used to determine the vertical when the foot is flat on the
ground. Since the accelerometers are unable to detect rotations
about the vertical plane, all motion is assumed to take place
in a nonrotating sagittal plane. Sabatini [12] took this research
further by creating a quaternion-based filtering algorithm.
A quaternion interpolation technique is used to improve the
accuracy of orientation and position estimates by reducing
the effects of sensor bias and scale factor drift in both the
accelerometers and gyroscope. Unlike the work described in
this paper, this gait analysis work does not attempt to measure
posture. In similar gait measurement work, Veltink ez al. [13]
use a sensor module containing a three-axis accelerometer and
a three-axis angular rate sensor to measure gait characteristics
in order to tune an implantable drop-foot simulator.

In a study of dynamic registration in augmented reality ap-
plications that require more precise orientation tracking as well
as position tracking, Azuma and Bishop [14] use inertial data
from linear accelerometers and angular rate sensors to reduce
apparent lag in the position and orientation estimates produced
by an optoelectronic tracking system. The use of an EKF pre-
dictor resulted in errors 5—10 times lower than without predic-
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tion. In contrast, the work described in this paper produces only
estimates of orientation using inertial and magnetic data.

Full 3-DOF orientation tracking is most commonly per-
formed using nine-axis sensor modules containing three
orthogonally mounted triads of angular rate sensors, ac-
celerometers, and magnetometers. Foxlin et al. [15], [16]
describes two commercial nine-axis sensing systems designed
for head tracking applications. Sensor fusion is performed using
a complementary separate-bias Kalman filter. Drift correction
is described as only being performed during stationary periods
when it is assumed accelerometers are sensing only gravita-
tional acceleration. Thus, the described algorithm requires that
all motion stop in order to correct inertial drift errors.

Bachmann et al. [7], [17] proposed a nonoptimal quaternion-
based complementary filter for human body tracking. The filter
is able to track through all orientations without singularities, and
continuously correct for drift without a need for stationary pe-
riods using nine-axis inertial/magnetic sensor module data. Ex-
tensions to this work and the development of an optimal filter de-
signed for human posture tracking applications are described in
[18]-[20]. Use of a first-order linear system for modeling human
body limb motions was first proposed in [18]. A Gauss—Newton
iteration method is used to preprocess accelerometer and mag-
netometer data to produce quaternion input to the EKF. Formu-
lation and simulation testing of a reduced-order implementation
of the Gauss—Newton iteration method for this Kalman filter is
documented in [19]. Preliminary experimental testing results are
presented in [20].

In [21], Gallagher et al. present a nonoptimal complemen-
tary filter algorithm that has a lower computational complexity
and similar accuracy to the work described by Bachmann et
al. in [7] and [17]. Luinge describes a Kalman filter designed
for human body tracking application in [22]-[24]. In the pro-
posed method, inclination is determined without low-pass fil-
tering accelerometer data. The design is based on assumptions
concerning the frequency content of the acceleration and the
magnitude of gravity. Reduction of drift about the vertical axis
is dependent on the use of a kinematic human body model. Mag-
netometers are not used. More recently, Roetenberg et al. [25]
extended the Kalman filter described in [23] to include a mag-
netometer model designed to prevent heading drift and com-
pensate for magnetic disturbances. This compensation allowed
a significant estimation accuracy improvement in comparison
with no compensation or using angular rate sensors only. In
[26], Zhu and Zhou describe a linear Kalman filter algorithm
designed to smooth accelerometer and magnetometer readings
from a nine-axis sensor module. Rather than estimating indi-
vidual limb segment orientations relative to a fixed reference
frame, as is done in this paper, their system determines joint
angles in axis/angle form using the data from the two sensors
mounted on the inboard and outboard sides of the joint. The axis/
angle pairs are determined analytically using processed mea-
surement data.

Kraft [27] describes an “unscented,” quaternion-based
Kalman filter for real-time estimation of rigid-body orientation
using nine-axis sensor modules. The described filter approx-
imates the Gaussian probability distribution using a set of
sample points instead of linearizing nonlinear process model
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equations. Simulation results demonstrate the general validity
of the described filter. Tests of the filter with real measure-
ments are mentioned, but not shown or quantified. Haid and
Breitenbach [28] also describe a Kalman filter algorithm for
use with inertial and magnetic sensors. The primary aim of
the filter is the elimination of drift and bias effects observed
in low-cost angular rate sensors. The filter works only in the
single dimension of the targeted angular-rate sensor. It does not
estimate limb segment orientation or joint angles.

Some work has attempted to eliminate the need to include an-
gular rate sensors in inertial/magnetic sensor modules. In [29],
Gebre-Egziabher et al. describe an attitude determination al-
gorithm for aircraft applications. The algorithm is based on a
quaternion formulation of Wahba’s problem [30], where magne-
tometer and accelerometer measurements are used to determine
attitude without the use of angular rate sensors. A Kalman filter
implementation of the algorithm is also presented. The algo-
rithm is based on the assumption that the rigid body to which the
sensor is attached is stationary or is slow moving, and is thus not
applicable to highly dynamic tracking applications. Chin-Woo
et al. [31] propose a gyroscope free inertial navigation system
that uses accelerometers to determine both linear and angular
motions of a rigid body. The approach requires a minimum of
six accelerometers. Acceptable configurations and basic algo-
rithms are examined through simulation. Use of accelerome-
ters to calculate angular rate results in a faster orientation error
growth rate than that associated with conventional angular rate
sensors. This result is due to inclusion of the angular accelera-
tion terms which introduce integrated noise and drift. The idea
of using accelerometers to measure angular rate is carried fur-
ther by Ang et al. in [32] and [33].

In contrast with the work described above, this paper presents
a filter algorithm that is specifically designed for tracking
human-limb segment orientation relative to an Earth-fixed
frame. The algorithm incorporates a human body motion
model. It adopts a two-layer filter architecture, in which the
QUEST algorithm preprocesses accelerometer and magne-
tometer data and an EKF fuses the QUEST output with angular
rate data.

III. MARG SENSORS

Experimental data were collected using MARG III iner-
tial/magnetic sensor modules designed by the authors and
fabricated by McKinney Technology [8]. The MARG sensor
design is based on its primary application, that is, human body
motion tracking. Primary sensing components for this unit
include Tokin CG-L43 ceramic rate gyros, Analog Devices
ADXL202E micromachined accelerometers, and Honeywell
HMC1051Z and HMC1052 one- and two-axis magnetometers.
The sensor module also incorporates a Texas Instruments
MSP430F149 ultra-low-power, 16-bit RISC architecture mi-
crocontroller. Overall, dimensions of the MARG III unit are
approximately 1.8 cmx3.0 cmx2.5 cm.

The manufacturer specified maximum allowable angular rate
of the CG-L43 ceramic gyro is + 90%s. This is deemed suffi-
cient to quicken response in human body motion tracking appli-
cations, but not accurately measure rates associated with highly
dynamic motion. Three of these gyros are orthogonally mounted
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Fig. 1. Kalman filter process model. g is the orientation quaternion, w is the angular velocity, w is a white noise, and 7 is the time constant.

within the MARG unit to form a triad capable of measuring
3-DOF angular rate. In the results presented here, the limita-
tions of the angular rate sensors did not affect the performance
or demonstration of the algorithms during typical human mo-
tion.

The maximum measurement range of Analog Devices
ADXIL202E is &+ 2 g, which is acceptable for sensing gravita-
tional acceleration. The ADXL202E is a two-axis acceleration
sensor on a single chip. As a result, only two of them are re-
quired to form a triad for measuring 3-DOF acceleration. The
ADXL202E also offers a duty cycle output, which can be directly
interfaced to a low-cost microcontroller without analog/digital
(A/D) converters. The accelerometers are not used to measure
linear accelerations associated with human motion.

In the MARG design, a one-axis HMC1051Z for the z-axis
and a two-axis HMC1052 for x-y axes are mounted on the same
PCB to form a three-axis magnetometer. The HMC1051Z and
HMC1052 are specially designed to be mounted on the same
PCB to form an orthogonal triad.

The purpose of the microcontroller is to convert analog sensor
outputs to digital data, digitally filter the angular rate sensor
data, and perform automatic set/reset of magnetometers to avoid
magnetic saturation problems. To prepare angular rate data for
processing by the Kalman filter, the data is averaged on start
up to establish initial bias values. During run-time, angular rate
data is preprocessed using a simple first-order high-pass filter
to eliminate drift over time. Static bench tests have established
that accelerometer and magnetometer data are relatively stable
over time, and they are thus not bias-corrected at run-time. Mag-
netic interference is a major concern when using magnetome-
ters in environments containing changing or distorted magnetic
fields [34]. This is an active area of research by the authors and
others [25]. No compensation for external magnetic effects is
performed in the work described in this paper. It is noted that the
MARG sensor is a prototype constructed using 2 g accelerom-
eters and 90°/s angular rate sensors. These components were
chosen for typical human motion, and may not be sufficient for
extreme human motion. The algorithm presented in the paper is
not limited to these particular sensor parameters.

IV. KALMAN FILTER PROCESS MODEL

As stated above, the objective of this paper is to design a
Kalman filter for real-time tracking of human body motion. To
do so, it is necessary to establish a process model representing
motion dynamics of the human musculoskeletal system. Dy-
namic models of the human musculoskeletal systems are com-
plex, and have been studied for many years. Such models are
ideal for computer simulations of articulated body motions, but
remain too computationally demanding for real-time applica-
tions such as real-time human motion tracking. Thus, the chal-
lenge is to develop a model that is simple yet adequate for mo-
tion tracking applications. Based on extensive trial and error

study, a first-order linear system model is adopted to represent
the motion of each human body limb segment. Such a model is
depicted in the left half of Fig. 1. It is assumed that each limb
segment is independent of the others. The input to the linear
system is a white noise w, and the output is the angular velocity
w of the limb segment. The most important parameter in this
model is the time constant 7, which determines how fast a limb
segment (e.g., upper arm) can move in typical human motion
conditions. The angular velocity is thus modeled as a colored
noise generated by a linear system with a white noise input.

In the filter, quaternions are used to represent the orientation
of each body limb segment for two reasons. First, the quaternion
representation does not suffer from the singularity problem as-
sociated with the Euler angle representation. Second, it avoids
trigonometric functions in the filter algorithm, making it more
efficient and easier to implement in real time on microcon-
trollers. In what follows, g will be used to denote the orientation
quaternion in Earth coordinates. The angular velocity w and the
quaternion derivative ¢ are related by the following well-known
identity [35]:

o1
§=sqQuw (D

2

where ® represents quaternion multiplication. Equation (1) is
represented by the center block in Fig. 1. The quaternion deriva-
tive ¢ is integrated to produce the quaternion q. In order to take
advantage of computational simplifications and efficiencies as-
sociated with unit quaternions, the resultant quaternion is nor-
malized to unit length in the last step of the process model, as
shown in Fig. 1. The quaternion ¢ produced by the integrator
may not be exactly unit length, but it is normally very close to a
unit quaternion. To avoid the complexity that the normalization
introduces into the Kalman filter derivation, it is not included in
the process model equations presented in the next section. As a
result, although the Kalman filter is an optimal algorithm, this
normalization procedure leads to a suboptimal algorithm. In the
next section, two Kalman filter designs based on this process
model will be presented.

V. KALMAN FILTER DESIGN

Two alternative approaches to the Kalman filter design based
on the process model presented in Section IV will be described
in this section. The state vector for both approaches is the same.
It is a 7-D vector consisting of the three components of angular
rate and the four elements of the orientation quaternion. The
difference between the two approaches is in the measurement
or output equation for the Kalman filter. The first approach uses
a standard Kalman filter design, which has a 9-D measurement
vector, consisting of 3-D angular rate, 3-D acceleration, and 3-D
local magnetic field. This 9-D vector directly corresponds to
the measurements provided by inertial/magnetic sensors mod-
ules. The first three components of the output equation (angular
rate portion) are linearly related to the state vector. However, the
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other six components of the output equation are nonlinearly re-
lated to the state vector. The nonlinear relationship is quite com-
plicated. As a result, the EKF designed with this output equation
is computationally inefficient.

The second approach uses a separate algorithm to find a
corresponding quaternion for each set of accelerometer and
magnetometer measurements. The computed quaternion is then
combined with the angular rate measurements, and presented to
the Kalman filter as its measurements. By doing so, the output
equations for the Kalman filter become linear, and the overall
Kalman filter design is greatly simplified.

A. The First Approach

The first approach is a standard Kalman filter design based on
the process model depicted in Fig. 1. The state vector x is 7-D,
with the first three components being the angular rate w, and the
last four components being the quaternion q. That is

Tq q1
Tr1 w1
— _ Ts | _ |42 _
T2 | = | W2 | =W, = =dq.
T6 a3
T3 w3
T7 q4
Based on Fig. 1, the state equations are given by
_il71- 1 _3?1_ -U)l
To| == | —|T2| + | w2 (2)
I lz3 | | ws
24 ] T4 r 07
Ts5 1] a5 gl
== ® 3
Te 2 | Tg T2 ©)
Lz7 ] T7 Lx3 J

It is noted that quaternion normalization is not modeled in these
state equations, but is carried out in the real-time implementa-
tion.

Since measurement data to the filter are provided by MARG
sensors, it is natural to choose the following as the measure-
ments of the Kalman filter:

21 [« component of angular rate 1
zo | = | y component of angular rate
23 | | z component of angular rate |
[ 24| [ 2z component of acceleration |
z5 | = | y component of acceleration
26 | | z component of acceleration |
[ 27 ] [ 2 component of local magnetic field
zg | = | y component of local magnetic field
| %9 | | z component of local magnetic field

Since angular rates are part of the state, the first three measure-
ment equations are simply given by the following:

Z1 =21+ v “4)
2o = X9 + Vo &)
23 = T3 + U3 (6)

where v; is the measurement noise that is assumed to be white.
As for the remaining six measurement equations, they turn out to
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Fig. 2. Block diagram of the first approach to Kalman filter design.
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Fig. 3. Block diagram of the second approach to Kalman filter design.

be quite complicated. As an example, the seventh measurement
equation is given by

27 = ((23 + 2% — 23 — 23) /b1 + 2(zax5 — x677) [ ha
+2(z4w6 + T527)/h3) [ (23 + 22 + 2823) +va (T)

where hi, ho, and hs are values of the Earth magnetic field
measured in the Earth coordinates, which are constant for a
given location. It is not difficult to design an EKF, as shown
in Fig. 2, based on state (2) and (3), and the nine measurement
equations, which was indeed carried out in [36]. The problem is
that computational requirements for implementing such a filter
are extremely high, making it unfeasible for real-time motion
tracking. An alternative approach to the Kalman filter design is
thus presented in the next subsection.

B. The Second Approach

Fig. 3 shows a block diagram of an alternative approach to
filter design. Acceleration and local magnetic field measure-
ments are used as input to the QUEST algorithm [37] to produce
what will be called the computed quaternion. The computed
quaternion together with angular rate measurements is then pre-
sented to a Kalman filter as measurements. It will be seen below
that the Kalman filter in this case is significantly simpler, owing
to the fact that the measurement equations are linear. It is true
that there is an additional computational cost to implement the
QUEST algorithm in this approach. Still, the overall computa-
tional requirements for this approach are much less than what is
needed for the first approach.

The QUEST (quaternion estimator) algorithm is a popular al-
gorithm for a single-frame estimation of an attitude quaternion
[37]. The algorithm was created to solve Wahba’s problem [30]
that involved determination of the attitude of a rigid body in ref-
erence to a fixed coordinate system based on a set of measure-
ment or observation vectors using a closed form solution. The
minimum number of measurement vectors required to compute
orientation is two. Early solutions to Wahba’s problem directly
compute a rotation matrix capable of rotating the measurement
(assuming no errors) vectors to match the reference vectors. The
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QUEST algorithm solves Wahba’s problem by calculating the
four elements of the corresponding optimal quaternion [37].

This alternative approach to filter design as shown in Fig. 3
is not without reasons. If the limb segment to which an iner-
tial/magnetic sensor module is attached is stationary, accelera-
tion (gravity) and local magnetic field measurements are suffi-
cient to determine the orientation of the body. While stationary,
accelerometers measure the local gravity vector in the body
frame. The 3-D gravity measurements can be used to determine
roll and pitch angles of the body relative to the fixed Earth frame.
The yaw angle of the body is determined from the local mag-
netic field measurements. In this application, the QUEST al-
gorithm takes gravity and magnetic field measurement vectors
with equal weight and computes the optimal quaternion that will
rotate these vectors to match their corresponding reference vec-
tors.

While the rigid body is in motion, the computed quaternions
from this algorithm do not represent the actual real-time ori-
entation of the body, because accelerometers measure the sum
of gravity and motion induced acceleration. This is where an-
gular rate measurements come to help estimate the orientation
of the rigid body. While angular rate measurements can be in-
tegrated to yield an orientation estimate, they are prone to drift
over an extended period of time. Acceleration and magnetic field
measurements do not drift over time. The Kalman filter in this
approach is designed to optimally fuse the complementary in-
formation provided by the angular rate measurements and the
computed quaternion.

It should be pointed out that this filtering architecture has
been previously proposed and successfully applied in other
areas such as attitude heading and reference systems (AHRS)
[38]. In [38], an inertial navigation system for autonomous
underwater vehicles was developed, in which a complementary
filter first combines measurement data from accelerometers,
angular rate sensors, and magnetic sensors. An EKF then fuses
the output of the complementary filter with the GPS/DGPS
measurements.

The state equations in the second approach are the same as
those in the first approach, that is, equations (2) and (3). The
measurement equations in this case are much simpler, and they
are

zi=wi+v, 1=1,...,7 (8)
where v; is the white noise measurement. Although the mea-
surement equations are linear, an EKF is still required since the
second part of the state (3) is nonlinear. Nevertheless, linearity
in the measurement equations significantly simplifies the filter
design and reduces computational requirements for real-time
implementation.

C. Discussion

The first-order process model and an early version of the
second approach to the Kalman filter design was first reported in
[18]. Rather than using the QUEST algorithm, a Gauss—Newton
iteration method was used to preprocess accelerometer and
magnetometer data to produce quaternion input to the EKF. A
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reduced-order implementation of the Gauss—Newton iteration
method was described in [19]. This reduced order implemen-
tation requires computing the inverse of a 3x3 matrix rather
than that of a 4 x4 matrix. The Gauss—Newton iteration method
was replaced by the factored quaternion algorithm in [20].
While more efficient, the factored quaternion algorithm pro-
vides a suboptimal solution. The QUEST algorithm provides
an optimal solution for noisy measurement data. Preliminary
experimental results were also reported in [20]. In this paper,
the QUEST algorithm is adopted to preprocess the acceleration
and magnetic field measurement data. The QUEST algorithm
requires computing the inverse of a 4x4 matrix, but it is a
single-frame or noniterative algorithm. The QUEST algorithm
needs to be executed once for each sampling step of the Kalman
filter. The Gauss—Newton method needs to be iteratively evalu-
ated several times until it converges for each sampling step of
the Kalman filter.

VI. KALMAN FILTER IMPLEMENTATION

In this section, the implementation of the second approach
Kalman filter design will be described. First, the state equations
are linearized and discretized to yield a discrete process model.
Second, modeling of the process noises and measurement noises
is presented.

The state equations (2) and (3) can be written together in the
following form:

&= f(x) +w(t). ©

This nonlinear process model can be linearized along the cur-
rently estimated trajectory &

of (z)
ox

The actual trajectory z is the sum of the estimated trajectory &
and the small increment Az

Az =

le=z Az + w(t). (10)

T =1+ Ax. (11)

The next step is to convert the continuous-time model (10) into a
discrete-time model. Let § = At be the sampling interval. Then
the difference equation corresponding to the differential (10) is
given by

A$k+1 = O, Az + wp (12)
where the discrete state transition matrix is
s _
e M 05 0 0 0 0 0
0 e ™2 \ 0 0 0 0
0 0 e T3 0 0 0 0
| _#8 __ #68 @16 @16 @28 @36
Q) = 2 2 2 1 2 2 2
B45 @76 266 16 1 B35 @96
2 2 2 2 2 2
i‘7§ .@45 _i‘5§ £E26 _M 1 M
2 2 2 2 2 2
_ i66 256 #46 #36 #06 @46 1
) 2 2 2 2 2 .
(13



1222
Linearized Model
q)k’ Hk’ Rk > Q" Parameters
2~ p- Initial
Yoo PO Estimate
T T 1 Kalman
Kk:BfH (HkE(H +Rk) Gain
z, | % =%+K,(z,-2) | Updatc
Measurement ~ Equations
P = ([ -K,H, ) P
Tgsy
Fert =X ¥ '[f(x) dt Proiection
T
- _ T
Pk+1 - (I)kPk(Dk +Qk

Fig. 4. Block diagram of the EKF.

and wy, is a vector of discrete white process noise and its ele-
ments are given by
te41—7
thyr ——
Wik = te € * ’U}L(’}/)d’}/

7

1=1,2,3
1=4,5,6,7.
The measurement (8) are linear and thus linearization is not
required. The corresponding discrete measurement equation is
given by

(14)

zr = Hypzp + vy, (15)
where H}, is the 7x7 identity matrix. An EKF can now be de-
signed for the discrete process (12) and the discrete measure-
ment (15). A complete diagram of the filter is depicted in Fig. 4.
It is seen from Fig. 4 that the model parameters ®;, Hy,, R}, and
Q. need to be provided to start the filter. @ is the discrete state
transition matrix given by (13). H, is the identity measurement
equation matrix of (15). The determination of the covariance
matrix ;. of the process noises and the covariance matrix Ry,
of the measurement noises is discussed below.
The process noise covariance matrix @y is defined by
Qr = Elwpwl] (16)
where F is the expectation operator, and wy, is the discrete
process white noise vector of (12), whose components are given
by (14). Before computing @y, it should be noted that the con-
tinuous process noises w(t) = [wy(t),wa(t), w3(t)]T of the
state (2) are independent white noises with zero mean and vari-
ance D;. As such, the covariance is given by

Dis(t—s), i=3j

Elus(thu (] = { 2w
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Fig. 5. Comparison of the simulated angular rate (left) and actual angular rate
measurements (right).

Using (17) and (14), the process noise covariance matrix )y of
(16) is evaluated to be

rqi1 0 0 0 0 0 07
0 g2 O 0 0 0 O
0 0 ¢g33 0 0 0 O
Qr=10 0 0 0 0 0 O (18)
0 0 0O 0 0 0 O
0 0 0O 0 0 O O
L O 0 0 0 0 0 0.
where ¢11, ¢22, and ¢33 are given by
D _2At
q11 = Elwigwig) = 2—1 (1 —e 7 ) (19)
T1
D _ 24t
q22 = Elwapwar] = 2—2 (1 —e ) (20)
T2
D _2At
g3 = Flwspwsi] = 2—3 (1 —e T ) . 21
73

‘What remains to be determined are the variance D; of the con-
tinuous white noise processes and the time constant 7; of the
process model. They are determined using actual measurement
data from the MARG sensors and a Matlab simulation imple-
menting the angular rate process model (2). The variance and
time constant in the simulation are adjusted until the output of
the simulation closely matches the actual measurement data. For
this purpose, a MARG sensor was attached to the right lower
arm of a user and typical arm motion data were collected. It was
experimentally determined that 7; = 0.5 s, D; = 0.4 rad?/s?.
Fig. 5 shows a comparison between the simulated angular
rates and the actual angular rates obtained from a MARG III
sensor for typical arm motions. The graphs to the left represent
the angular rates generated by the simulation model. The graphs
to the right are the angular rates measured by a MARG sensor.
It can be observed that the two sets of data exhibit similar char-
acteristics. Autocorrelations of the simulated and actual x-axis
angular rate data are plotted in Fig. 6. The autocorrelation of the
actual angular rate data obtained from the MARG sensor was
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Fig. 6. Autocorrelations of the simulated x-axis angular rate (top plot) and the
actual x-axis angular rate (bottom plot).

first computed. The parameters of the process model were then
adjusted so that the autocorrelation of the simulated angular rate
closely matches that of the actual data. It is seen that they are
not exactly the same, but closely resemble each other.

The measurement noise covariance matrix R represents the
level of confidence placed in the accuracy of the measurements,
and is given by

Ry, = E[vivf]. (22)
In principle, Ry is not necessarily diagonal. For practical pur-
poses, only diagonal elements are experimentally determined
based on actual measurements. A MARG sensor was placed in
various static configurations, and data were collected. The vari-
ances of the first three measurement components are determined
directly from angular rate measurements, and the variances of
the other four components (quaternion components) are deter-
mined using computed quaternions. The experimentally deter-
mined values are Ry = Rss = Rss = 0.01 rad®/s~2, and
R44 = R55 = RGG = R77 = 0.0001.

VII. OFFLINE MATLAB TESTING RESULTS

After deriving all the required parameters to initialize the
Kalman filter, it was implemented using MATLAB to test the
performance and accuracy of the quaternion orientation esti-
mates. Real world data recorded using a MARG sensor was used
in these tests.

Since the Kalman gain was determined such that the sum of
squared errors is minimized, one way to measure the conver-
gence of the Kalman filter is through examination of the trace
of the error covariance matrix Pj. Fig. 7 shows the trace of P
for the first 200 samples of data obtained with the sensor in its
reference position (x-axis pointing north, y-axis pointing east,
and z-axis point down). It is noted that the sum of squared er-
rors reaches a steady state after approximately 0.6 s.

Table I shows the elements of the quaternion for the first five
samples. The initial estimate was chosen to be the unit quater-
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Fig. 7. Trace of the error covariance matrix.

TABLE I
CONVERGENCE OF THE QUATERNION ESTIMATES

| Sample do | 41 | G2 ds
1 0.99985 | 0.0082135 | 0.0066032 | 0.013570
2 0.99991 | 0.0057585 | 0.0049037 | 0.011901
3 0.99990 | 0.0055983 | 0.0048826 | 0.011882
4 0.99990 0.005288 0.0046884 | 0.011784
5 0.99990 | 0.0052297 | 0.0046353 | 0.011506

nion (0.5, 0.5, 0.5, 0.5). The actual position of the sensor in the
reference position is represented by the quaternion (1, 0, 0, 0).
The data shown in Table I indicates that the Kalman filter esti-
mate converged to the actual position in a single iteration.

While the QUEST algorithm works well for static orientation
and slow movements, the objective of the Kalman filter is to
blend angular rate measurements with the estimates produced
using magnetometer and accelerometer data during periods in
which the sensor module is subjected to motions involving high
angular rates and large linear accelerations. To verify the esti-
mation accuracy during such periods, the orientation estimates
of the Kalman filter were compared with the estimates produced
using only the QUEST algorithm with no rate measurement and
with the reference motion of a precision tilt table. Two kinds
of experiments were conducted for this test. The first used con-
trolled rotations produced by a HAAS precision tilt table. The
table has two DOFs and is capable of positioning to an accuracy
of 0.001° at rates ranging from 0.001 to 80°/s. In order to mit-
igate any possible magnetic effects generated by the steel con-
struction of the tilt table, the sensor package was mounted on
a nonferrous extension above the table as shown in Fig. 8. The
extension is made of a piece of PVC pipe and is approximately
1 m in length. The second experiment used a random motion
pattern produced while the sensor was attached to the arm of a
person.

In the first set of experiments, the sensor was initially placed
with its xyz axes aligned with north-east-down directions. The
sensor was rotated —90° about the x-axis at a rate of 60°/s and
then rotated 90° at the same rate (in the reverse direction) for
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Fig. 8. Experimental setup using a HAAS precision tilt table.
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Fig. 9. Orientation estimate produced by the QUEST algorithm (left) and the
Kalman filter (right) with a 90° rotation in roll axis.

two cycles. Fig. 9 shows the performance of the Kalman filter
in estimating the orientation of the sensor. The graphs to the
left show the orientation estimated by the QUEST algorithm,
and the graphs to the right show the orientation estimated by
the Kalman filter. It can be seen that the QUEST algorithm was
able to correctly estimate the roll angle before the first (negative)
rotation, between the first and second (positive) rotations, and
after the second rotation, but it is not able to correctly estimate
orientation during the rotational motions. During the rotational
motions, the accelerometers measure the sum of gravity and mo-
tion induced acceleration. Without rate sensors, the QUEST al-
gorithm is not able to differentiate gravity from the motion ac-
celeration. Relatively large errors in pitch and yaw were also
produced by the QUEST algorithm. On the other hand, it can
be seen from the top-right plot that the Kalman filter was able
to correctly estimate the roll angle throughout the duration of
the experiment. The small pitch and yaw motions seen in the
center-right and bottom-right plots are due to misalignment of
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Fig. 10. Zoom-in view of the roll estimate (solid curve) from the Kalman filter
and the tilt table reference motion (dashed curve) with a 90° rotation in roll.
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Fig. 11. Difference between the roll estimate and the tilt table reference motion.

the sensor module with the motion axes of the experimental tilt
table. The misalignments were corrected manually, but could
not be completely removed without the use of equipment not
available to the authors. To confirm that the errors were due
to misalignments, the algorithm was tested using synthetically
generated, noise-free data with rotation in only one axis. These
results demonstrated that the algorithm does not produce any
observable cross-coupling responses in other axes.

To illustrate the accuracy of the Kalman filter, the estimates
produced by the Kalman filter can be compared with the mo-
tion of the tilt table. Since the tilt table used in the experiments
is much more accurate than the tracking system under evalua-
tion, its motion can be treated as a truth reference. In Fig. 10,
the top-right plot of Fig. 9 is replotted in a zoom-in view for the
time period of 7-15 s. The solid curve represents the roll esti-
mate from the Kalman filter, and the dashed curve is the refer-
ence trajectory of the tilt table. The difference between these two
curves is shown in Fig. 11. It is observed from Figs. 10 and 11
that the static accuracy of the filter is better than 2° for the time
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Fig. 13. Orientation estimate produced by the QUEST algorithm (left) and the
Kalman filter (right) with random arm movements.

periods of about 7-9.8 s and 11.3—15 s. During the time period
of 9.8-11.3 s, the tilt table and the MARG sensor are in the dy-
namic state moving from —90.0° to 0.0° at the rate of 60%s. It
can be observed from Fig. 11 that the maximum error is about 9°.
This large dynamic error is mainly due to the lag of the tracking
system. The lag is on the order of 100 ms, as depicted by the
horizontal gap between the blue curve and green curve during
the time period of 10-11 s. The sampling rate is 100 Hz, which
yields a lag of 10 ms. The computational time required to ex-
ecute the filter algorithm is about 1.6 ms. The additional lag is
caused by data transmission. In human body tracking applica-
tions, this lag-induced error is only observable during highly
dynamic motion, and is not of great enough magnitude to im-
pair user interaction with a virtual environment.

Fig. 12 shows plots of rotating the sensor about the y-axis first
by 45° and then by —45° at a rate of 45°/s. Similar results are
observed in this experiment.

Fig. 13 shows the results of an experiment in which the sensor
was rotated randomly while attached to the arm of a person. Al-
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Fig. 14. Snapshot of real-time testing. The user with two MARG sensors at-
tached to the right arm is the foreground and the human avatar projected on a
screen is in background.

Fig. 15. Another snapshot of real-time testing.

though there is no true reference in this case, it can be seen that
the Kalman filter eliminated the jittering and spiking contained
in the orientation estimates produced by using the QUEST al-
gorithm alone.

VIII. REAL-TIME TESTING RESULTS

After initial testing of the EKF with the MATLAB implemen-
tation, the QUEST algorithm and EKF algorithm were imple-
mented in Java for real-time testing and evaluation. Computa-
tion time required to perform a single update is 1.6 ms. Memory
management in the Java implementation is carefully performed
to avoid the requirement for garbage collection and possible
interruption of filter processing. The real-time quaternion pro-
duced by the Kalman filter was visualized using a human-like
avatar as seen in Figs. 14 and 15. Two MARG sensors were used
to track the motion of a human arm, one sensor being attached to
the upper arm and the other attached to the lower arm. A video
clip demonstrating real-tracking of human arm motions is avail-
able at http://ieeexplore.ieee.org.
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The QUEST algorithm was able to track the motion of the
human arm under slow-moving conditions where linear accel-
eration was not significant. However, when the arm motion be-
came faster, the algorithm was not able to follow the arm motion,
resulting in observable lag as well as overshoots.

When the EKF was integrated with the QUEST algorithm, the
avatar was able to successfully track the human arm motion in
real time under all conditions. Furthermore, the filtering process
did not produce any noticeable lag. Movement of the human arm
and the avatar was synchronized.

IX. CONCLUSION

This paper presents the design, implementation, and experi-
mental results of a quaternion-based Kalman filter for real-time
human body motion tracking using inertial/magnetic sensor
modules containing orthogonally mounted triads of accelerom-
eters, angular rate sensors, and magnetometers. This subject
filter is not applicable to applications in which accelerations
due to forces other than gravity are present for indefinite pe-
riods. The filter was designed with the goal of being able to
produce highly accurate orientation estimates in real time. This
real-time requirement precluded the use of complex models
of human motion. Instead the filter design makes use of a
simple first-order linear system model. Output of the model
is angular velocity modeled as colored noise generated from
white noise input. The Kalman filter design is further simplified
by preprocessing accelerometer and magnetometer data using
the single-frame QUEST algorithm. The quaternion produced
by QUEST is provided as input to the Kalman filter along with
angular rate data. In comparison to more traditional approaches,
this preprocessing step significantly reduces the complexity
of filter design by allowing the use of linear measurement
equations. Prior to testing of the filter algorithm, values for
variances and time constants where determined by comparing
simulation results to actual measurement data obtained during
typical arm motions. This process was considered complete
when the autocorrelation of the simulation data closely matched
that of the actual data. In experiments designed to validate filter
performance, this approach was shown to work well. In these
experiments, filter orientation estimates were compared with
truth data obtained from a rotary tilt table. Filter response very
closely matched tilt table motion with a static accuracy better
than 2° and a dynamic accuracy of better than 9°. This larger
error during motion was largely caused by data communication
delays. Even with this delay, qualitative experiments in which
the algorithm was used demonstrate that these dynamic errors
were not of great enough magnitude to impair user interaction
with a virtual environment.

The Kalman filter design presented in this paper is the result
of several years of effort. With refinement of this design and
others mentioned in the related work section, orientation esti-
mation algorithms have reached a limit given the accuracy and
noise characteristics of the MEMs sensors employed in the ap-
plication. The angular rate sensors and accelerometers are truly
“sourceless” and do not depend on any outside reference. How-
ever, though it is not artificially generated, the magnetometers
must sense a homogenous ambient magnetic field in order for
these systems to deliver orientation estimates that are stable in
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azimuth. Thus the ultimate accuracy of these algorithms can not
be determined by considering only the sensors and the imple-
mented algorithms.
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ABSTRACT: In human posture tracking applications, limb segment attitude can be estimated without the aid of
o generated source using small inexpensive inertial /magnetic sensor modules. In the absence of an adegquote
process model and process noise characteristics or in an application in which the dynamie and measurement rela-
tions are non-linear, a simple complementary filter represents a computationally inexpensive solution that pro-
duces accurate attitude estimates superior to those of an improperly tuned Kolman filter. This paper presents the
theory and experimental results for a single parameter tunable guaternion based attitude estimation filter, The
described sub-optimal constant gain complementary filter is the first filter designed for inertial/magnetic sensor -
modules capable of estimating orientation in all attitudes without singulariiies while continuously correcting for
drift without the need for still periods. Experimental results qualitatively ond quantitatively demonsirate the acou-

racy and stability of the filtering algorithm.

INTRODUCTION

Accurate real-time tracking of the oriemtation or

 attitude of rigid bodies has wide application in nav-
igation, robotics [1], helicopters [2], tele-operation,

augmented reality, and virtual reality [3]. Advances
in the field of miniature sensors have made possible
inertial/magnetic tracking of the three degrees of
orientation using sensor modules containing three
orthogonal angular rate sensors, three orthogonal
linear accelerometers and three orthogonal magne-
tometers. The orientation estimates are based on
the passive measurement of physical quantities that
are directly related to the rate of rotation and the
orientation of the tracked rigid-body. The estimates
are expressed relative to an Earth fixed reference
frame.

 The purpose of the human body tracking system
is to estimate the orientation of multiple human
limb segments and use the resulting estimates to
set the posture of the human body model that is
visually displayed. Figure 1 depicts experiments
designed to qualitatively evaluate and demonstrate
this capability. In these experiments three inertial/
magnetic sensor modules attached to the limb seg-
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ments to be tracked. Video recordings of the system
in normal operation indicate that posture estima-
tion was accurate and showed very little lag. A
quicktime movie of these experiments may be down-
loaded at hittp;//wwwusers.muohio.eduw/bachmaer/
research.htm. This video qualitatively demonstrates
the dynamic accuracy of the quaternion attitude
estimation filter which is the subject of this article.
A naive approach to inertial orientation tracking
might simply involve integration of angular rate
data to determine orientation. However, this solu-
tion ig prone to drift over time due to the buildup of
small bias and drift errors. In order to avoid drift,
inertial tracking systems make use of complemen-
tary sensors to continuously correct the orientation
estimate. Accelercmeters are used for low frequency
measurement of the gravity vector relative to the
coordinate frame of the sensor module. Since
accelerometers actually sense the sum of gravity
and linear acceleration due to motion, low pass fil-
tering is generally required to discriminate against
the latter. Magnetometers serve a similar function
for the local magnetic field vector. Taken together,
the use of accelerometers and magnetometers.
and the use of angular rate sensors, respectively,
represent complementary low and high frequency
methods of attitude estimation. When combined,
these two types can also be used for continuously



Fig. 1-Inertial/ Magnetic Tracking of the Arm and Laeg Using Three Sensor Modules [4]

accurate attitude estimation in dynamic applica-
tions without latency.

In recent years, this type of problem has most
cormmonly been solved by designing a Kalman filter
to integrate the data from the complementary
sensor types. In applications such as spacecraft atti-
tude estimation where the dynamics of the tracked
body are well defined and an accurate process model
is available, the ideal solution to the tracking prob-

lem would be an extended Kalman filter [5]. In the

work described here, the targeted application is
real-time human posture tracking. Dynamic models
for the musculoskeletal system have been studied
for many years [6]. Such models are idesl for com-
puter simulations of articulated body motions, but
remain foo. computationally demanding for real-
time applications such as human motion tracking.

" Thus, the challenge would be to develop a model

that is adequate, but not overwhelmingly complex
for motion tracking applications, In the end, how-
ever, it may be the case that a properly tuned com-
plementary filter will provide attitude estimates
with an accuracy that is comparable to those
made by an extended Kalman filter without the
associated complexity and development time. Thus,
the prototype research described here makes use of
a complementary filter based upon a quaternion
representation of orientation.

The remainder of this paper will describe a proto-
type attitude estimation filter designed for an iner-
tial/magnetic human body tracking system. The
filter processes sensor data and produces orienta-
tion estimates expressed in quaternion form [7]
without singularities. Estimation error is minimized
using Gauss-Newton iteration. Unlike filters previ-
ougly designed for the targeted application, drift is
corrected continuously without any requirement for
still periods. Experimental results qualitatively and
quantitatively demonstrate the performance of the
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filter showing that the produced attitude estimates
are stable and accurate. The work described here
laid the foundation for numerous attitude estima-
tion filters designed for inmertial/magnetic sensor
modules {8, 9].

Background and Related Work

Use of angular rate sensors and accelerometers,
or inertial measurement units IMU) in land and/or
underwater robots has been well documented
[1][10-12]. A study of human motion tracking using
accelerometers alone was reported in [11]. For
motion involving small linear accelerations, a set
of tri-axial accelerometers was used to determine
two degree of freedom (DOF) rotation angles.
During motions accompanied by higher accelera-
tions, a technique is described that involves the use
of two sets of tri-axial accelerometers on a single
rigid-body to differentiate gravitational acceleration
from motion related linear acceleration. Reference
[14] described an attitude estimation algorithm
based on the use of angular rate sensors and
accelerometers. In this case, drift in heading esti-
mation was unavoidable due to a lack of additional
complementary sensors such as magnetometers.

Reference [15] presents an attitude tracking sys-
tem with GPS and inertial sensors used for aircraft.
Differences between the GPS signals received by
three antennas are used to estimate attitude.
Reference [16] replaces the antenna information
with celestial observation datas. Reference [17]
describes an attitude package, which combines the

- outputs of inclinometers, gyros, and compasses to
obtain attitude estimation. All three examples utilize
Euler angles to represent orientation and a Kalman
filtering algorithm to integrate the information.

Reference [18] presented the first inertial/
magnetic gystem for head tracking applications.
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. This system utilized a fluid pendulum and three
solid-state piezoelectric angular rate sensors. The

initial system did not include a compass or magne-
tometers and thus drifted about the vertical axis. -

Subsequent systems include three orthogonal solid-
state rate sensors, a two-axis fluid inclinometer and
a two-axis fluxgate compass [19]. InterSense, Inc.
was started as a result of this research and contin-
ues to produce inertial tracking devices designed for
head tracking applications. Sensor data is processed
by a complementary separate-bias Kalman filter
which required periods of “still time” to correct for
rate sensor drift [19]. ‘

The fact that inertial data lends itself to predic-

tion through the use of motion derivatives has
resulted in the use of inertial sensors in numerous
efforts to combat latency problems. Reference [20]
demonstrates that predicting future head location
using three angular rate sensors and three linear

accelerometers is an effective approach for signifi-

cantly reducing dynamic errors in an augmented
reality head tracking system. In this study, predic-
tion caused the head tracking dynamic accuracy to
increase by factors of 5 to 10. Linear Kalman filters
are used to estimate and predict translation terms
and an Extended Kalman Filter (EXF) is used to
estimate and predict orientation terms.

Estimating Orientation

This section describes how angular rate, gravita-
tional acceleration, and the local magnetic field

gensed in the coordinate frame of a moving rigid

body can be used to estimate the orientation of the
body relative to an Earth fixed reference frame. For
illustrative purposes, the discussion begins with a
static situation in which the body is not in motion
"and later describes how the same techniques are
used in a dymamic tracking situation. All rotations
are expressed using quaternions. The use of quater-
nions reduces the number of required scalar oper-
ations, and eliminates calculations involving
trigometric functions. In addition, using quater-
nions allows the avoidance of singularities associ-
ated with Fuler angle descriptions of orientation.”

Estimation Using Accelerometers
and Magnetometers

Accelerometers measure the combination of

forced linear acceleration and the reaction force due

to gravity. Thus, the output of an accelerometer
triad is given by

Qneasured — 8 — & )

For bodies that are not in motion, forced linear
acceleration is zero (a = 0). In this case accelerome-
ters sense only gravity. Gravity in Earth coordinates
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is always down and can be expressed as the down
unit vector in quaternion form as '

Em =00 0 0 -1] (2)

where the superscript, B, indicates the vector is
described relative to an Barth fixed reference frame.
Three orthogonally mounted accelerometers sense
the same vector relative to their own coordinate
frame. This vector quantity can also be expressed as
a pure vector quaternion ' ’

Sh= [0 hl h2 ha] (3)

where the superscript, S, indicates that the vector is
described relative to the moving coordinate frame of
the sensor module. Both m and h describe the same
vector. If it is assumed that there is no measurement

“error in the accelerometers, all differences can be

attributed to rotation of the frame of reference of the
module. This rotation can be expressed using
quaternion multiplication invelving a quaternion,
q, as: : ‘ .

' fSh=q!1®'m®q (4)

Solving for q based on the known m. and the meas-
ured h produces an expression for the orientation of
the sensor relative to the Rarth fixed reference
frame. Unfortunately, the quaternion, g, will remain
constant if the body is rotated about a vertical axis
aligned with the gravity vector. To eliminate this
ambiguity, another vector that is assumed to remain
constant over a given working volume is used as a
reference. : _

Like gravity, the direction of the local magnetic
field is a known quantity. It can be expressed rela-
tive to the Barth fixed reference frame as the pure
vector quaternion

En= [0 n; np I'lg] ‘ (8)

Three orthogonally mounted magnetometers can
sense the same local magnetic field relative to their
own coordinate frame. The pure vector quaternion,
b, is used to express this sensor based guantity.

Sb=[0 by by by ®

if it is assumed that the axes of the accelerometer
triad are aligned with those of the three axis mag-
netometer. Both the gravity and magnetic field
vectors are measured relative to the same sensor
coordinate frame. If the magnetometers perfectly
measure the three components of the local magnetic
field vector, the quaternion, q, from Eq. (4) that
relates the rotated frame of the accelerometers to
the Earth fixed reference frame also relates the
rotated frame of the magnetometers to the Earth
fixed reference frame. That is,

b=q7'® In®q ¢))
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- Applying the rationale df Eq. {4), Eq. (7) will remain

constant if the tracked body is rotated about an axis
aligned with the local magnetic field vector.
However, under the assumption that the magnetic
and gravity vectors are not parallel, both equations
can be used together to determine orientation. Any
axis-aligned rotations that allow one equation to
remain constant will result in a change in the meas-
ured quantities involved in the other. As shown later
in this paper, this circumstance can be used to
obtain a unique estimated orientation quaternion,
4. Solving for § based on measurements of the
gravity and magnetic field reference vectors is
essentially a quaternion version of the Wahba
problem [21, 22].

In order to track the orientation of moving bodies
using the above methods, the following assumption
is made. For all moving bodies, linear acceleration
will average to zero given a period of sufficient
length. Otherwise, the bodies would soon reach
excessive velocities. Therefore, when averaged over
time, an accelerometer triad returns only the com-
ponents of the gravity vector or the local vertical.
This averaging allows accelerometers combined
with magnetometers to be used as a low frequency
source of orientation estimates. The length of the
period over which acceleration must be averaged is
dependent upon the type and frequency of motion
being tracked. These estimates would not be useful
in applications involving feedback control since they
would tend to lag behind the true orientation of an
object undergoing rapid changes in orientation.
However, in experiments they have been found to
still be useful by themselves in applications where
some lag is acceptable and it is desirable to keep the
cost of individual sensor modules to a minimum,

Estimation Using Angular Rate Sensors

Three orthogonally mounted angular rate sensors
can be used to determine the rotational velocity of
& body in three dimensions. In the same way a
car speedometer can be used to determine travel
distance given a known starting point, angular rate

sensors can be used to determine attitude. The

three-axis angular rate sensor outputs measure
the rotational rates about the body x, y, and z axes.
The measurements can be used to construct a rate
vector that can be expressed as the pure quaternion

S0=[0 p q 1] @®

where p, q, and 1, respectively, represent the rates of
rotation about the body x, y, and z axes. The pure

* quaternion, ®w, is used to obtain a rate quaternion

(23],

. 1
q=-§—q®5m (9)
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where q is a quaternion representing the current
orientation, the indicated product is a quaternion
product, and q is expressed relative to the Earth
fixed reference frame. ‘ ‘
If the sensor data is noiseless and unbiased, the
rate quaternion derived in Eq. (9) can be integrated
for an unlimited amount of time to determine the
orientation of the rigid-body to which the sensors
are attached. In reality, low-cost miniature rate sen-
sors can be assumed to operate under some bias and
noise effects. In the same way distance estimates
made using a poorly calibrated speedometer would
steadily become more and more inaccurate, so
too will orientation estimates based on the use of
miniature angular rate sensors. Thus, the angular
rate sensors can only be considered a high frequency
source of orientation estimates that must be peri-
odically or continuously corrected using a low
frequency source. '

Quaternion Based Complementary
Attitude Filter

The two previous sections establish the comple-
mentary nature of orientation estimates derived
using accelerometers and magnetometers and those

" derived using angular rate sensors. An efficient

quaternion based complementary attitude filter:
has been devised that combines the data from all
three types of sensors to produce an estimate that is

- continuously accurate through all orientations.

Figure 2 is a block diagram of a simple complemen-
tary quaternion-based attitude estimation filter.
The filter inputs are a three-axis angular rate
sensor, a three-axis accelerometer, and a three-axis
magnetometer. Its output is a quaternion represen-
tation of the orientation of the sensor module rela-
tive to an Earth fixed reference frame.

Parameter Optimization

.Combim'ng the complementary sensor inputs is
regarded as a parameter optimization problem. The

(iydy)

Magnetomelers T
(b} IXTKY'X

Angular-rate 1.
Sensors 7] qu(o” a7)

(pgn) T

Fig. 2-Quaternion Based Attitude Estimation Filter [4]
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goal of this optimization problem is to minimize
a modeling error that is based on the difference
between what the accelerometers and magnetome-
ters meagure and what they are expected to mea-
sure given the last estimated orientation. The rate
sensors serve to quicken the overall response of the
system.

The three orthogonally mounted accelerometers
return an approximation to the local vertical rela-
" tive to the sensor coordinate frame, the unit vector
h. The magnetometer returns the direction of the
local magnetic field relative to the sensor coordinate
frame, the unit vector b. We combine the vector
parts of the quaternions defined by Eq. (3) and Eq.
(6) to produce a 6 X 1 measurement vector

Yo = [h1 hz hS bl b2 bs] (10)

In order to compare the expected measurement
with what is contained in the measurement vector,
all vectors must be expressed relative to the same
coordinate frame, The vectors defined by Eq. (2) and

Eq. (6) are mapped from the Earth fizxed frame to -

the sensor frame through quaternion multiplica-
tions as follows [1]

Sh=q'®™ m®q, b=q'®*b®q (11

Combining the vector parts of Eq. (11) into a single

6 X 1 computed measurement vector produces
Y=y ¥2» ¥ Ve ¥s5 ¥al (12)

where 31, Vo, and ys, are the elements of the vector
part of ®h and yy, 5, and yg, are the elements of the
vector part of Sb. The difference between the actual

measurements and the computed measurements is

the 6 X 1 modeling error vector
&(q) = ¥o — ¥(@) (18)

In viewing Eq. (13), note that if there is no meas-
urement noise (perfect sensors), the difference
between the measured and computed values will
equal the zero vector. However, when real sensors
are used, this can no longer be expected. Instead, a
value for the estimated orientation guaternion, g,
can be obtained by minimizing the squared error cri-
terion function:

olq) = eT(@e(q) (14)

Tn the current version of the filter, the criterion
function is minimized using Gauss-Newton itera-
tion [24]. This method is based on linearized least
squares regression analysis where y, is considered a
vector of data points and y(q) is a vector to be fitted
to those points. The full correction step is [24]

Agpy = XTX] "X e(@) (18)

where § is the previous estimate for q and the
individual elements of the measurement lineariza-
tion matrix, X, are defined as [25]
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8g;

Since we are dealing with data corrupted by noise,
the correction step is scaled by a value a producing

Adparier = o] X" X] X e(@) an

where
o = kAt (18)

and k represents the filter gain value. Thus, for dis-
crete time step integration, each succeseive estimate
of orientation Would be calculated as

Bair = 8o + 3L + o X" X]Ke(d,)
= q.n + q_At + I{Aqfuu (19)

If § is constrained to unit length as depicted in
Figure 2, a unique solution to the optimization prob-
lem will exist and the regression matrix

S=X'X (20)

can be inverted [25]. A more efficient computation of
A§ results from noting that if

Onew = Qaa + Adgay 21)

and if both &4 and .., are unit quaternions, then
any small A&gy must be orthogonal to §. If p and g

. are any two quaternions, then p is orthogonal to q if .

and only if p is the quaternion product of q and
a unique vector v (real part equal to zero) Where v is
given by

v=ql®p ' (22)
Accordingly, Aq can be written in the form
Aq=q®v=q®[0 v vy Vgl (23)
With this constraint, linearization of the computed
measurement vector, y(q), in Figure 2, yields
y(g + Aq) = y(q) + XAq
=y@+X(q®[0 vi vy vgl) (24)

- and consequently:

‘2’ =X(@®[0 1 0 OD=X(q®i* (25)
: .
;y.—X( ®0 0 1 0)=Xqg®j® (26)
Vo

:33 ~X(@® 0 0 1)=Xqek® @7
where 1, j, and k are quaternion forms of unit vec-
tors pointing in the directions of the positive x, v,
and z axes, respectively. Thus, when Gauss-Newton
iteration is applied to unit quaternions, it is suffi-
cient to solve for only three unknowns rather than
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four as in the methods for estimation of Aqy, in Eq.
(16), That is, if X is the 6 X 8 matrix

then,

vy = [X7X]7IX,E(E) (29)
and

Adpn = § ® [0, Avgy] (30)

Incorporation of the above into the Gauss-Newton
algorithm notably simplifies the computation of the
Aq quaternion since it requires only a 8 X 8 matrix
inversion rather than the 4 X 4 matrix inversion of
the basic algorithm. This is important since best
algorithms for matrix inversion are of O(m®) com-
plexity [26]. _

The above dimension reduction also leads to an

efficient approach to the 3 X 3 problem formulation.

Specifically, let g, be the incremental rotation
quaternion given by:

o =[1 1, 1, rgl=1[0,1] (381)

Evidently, as the rotation vector, r, approaches the
zero vector, then q, approaches a unit quaternion.
Thus, if a value is found for q, that reduces the
squared error criterion function, ¢(q), it follows
that '

(j.new = Qold ® qr (32)

and that, in the limit, as r approaches zero, §,,,, will
also be a unit quaternion. More practically, the
results of Eq. (32) should be normalized to a unit
quaternion after every iterative application of this
equation [24], thereby removing any limitations on
the magnitiude of x,

Eq. (21) can be rewritten in additive form by not-
ing that :

Ag = e — Qo = Qoa® [1 I Ty Tl
- G4u®[1 0 0 0 (33

= Guu®Il 1, 1, 1 =§u®[0,x] (34)
where .
"= [ X% TN XT e(dg) (35)

and, the measurement linearization matrix, X, is

the 6 X 3 reduced order matrix;

r 0 =vi ¥
Va - 0 -
~¥a y». O
X=2[ 0 ~-ys ¥s (36)
1% 0 -y
~Y¥s ve O
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To understand the importance of these results, it
must be recognized that the elements of the lin-
earization matrix are directly related to the compo-
nents of the computed measurement vector, y(Q),
given by Bq. (12). Since this vector is needed in
every cycle of Gauss-Newton iteration to compute
the modeling error vector, &(d,q), given by Eq. ( 13),
it follows that the above value for X, is “free” since
all terms are known once £(§,5) has been computed.
Egq. (86) provides an order of magnitude reduction in
the amount of computation needed to obtain X, [24,
25]. This has significant importance when applying
Gauss-Newton iteration in practical real-time orien-
tation tracking systems.

Linearization 1.1.1

Figure 3 is a block diagram of the linearized
quaternion attitude estimation filter. The inputs n,
and n, are maneuver induced noise and rate sensor
noise, respectively. The basis for linearization is
the assumption that in the absence of measure-
ment noise the computation of Aqgy, is exact and
therefore ‘

Mgy =q,,, — & (38)

This assumption would be exact only if y depended
linearly on q, which it does not.

Application of Mason’s formula to Figure 8
produces:

k 1
~ 2 ' ,
- = - ks - _sl_ (89)
qtrue . 1 -+ __s:_

Thus, with correct initial conditions, in the absence
of noise,

1,

&= e (40)

regardless of the value of k. This means that, under
the linearization assumptions, Figure 8 is a comple-
mentary filter [3] since, for all k, if n; and n, are
zero, then § = gy

e —

Fig. 3-Block Diagram of Linearized System
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Noise Response

Applying Mason’s formula to noise disturbances
n; and ny in Figure 3, produces the following low
pass filter transfer functions.

4 k% k
—_ = = (41)
G s k—1~ stk
8
1

i 8 1
— = =— (42)
N, 14+ k% s+k

Bq. (41) and Eq. (42) can be used to find an optimal

k value in Eq. (18) based upon power spectral den-
sity functions for both the noise signals and actual
maneuvering behavior of the tracked object.
Unfortunately, this information will rarely be avail-
able, 50 ad hoc “tuning” of k is more likely to succeed
in practical circumstances [27].

Response to Initial Condition Errors

Eq. (40) assumes that § has been correctly ‘inih

tialized. In order to understand how an erroneous

initialization approaches qi.. over time, consider
the following static sensor scenario, Suppose the

sensor module is mounted in a static reference

position and

Qre=1[1 0 0 0 (43)

Agsume that the unit quaternion, §, is incorrect and

is represented by
ql;rue = [1 5x By Bz] (44)

where all § are small quantities. In the absence of
motion and noise, g =0 and both n; and ny equal
zero, Based on Figure 3, the initial value for epsilon
of e(qy,) is

8(‘30) = dtrue - dﬂ = [0 =8y —sy _Sz] (45)

Since the first component of §; in Eq. (45) will
always be zero, it can be assumed that the first com-
ponent of Eq. (43) will remained unchanged and §
will take on the form

a=0 & § 5 (46)

The transfer function to the scalar % from 8, is
given by:

Xes) s 1

5, 1+ks' s+k “n

Employing the inverse Laplace transform produces
the result

(t) = B, M &(t) = o7k (48)
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BEquivalent results apply for #(t) and %(t). This
implies that any transient errors in § resulting from
erroneous initialization will persist for a time
inversely proportional to k., Specifically

1
T =Y (49)

and for any disturbance, 8, the resulting errors in
the x component of £ will be

gy(t) = 3,87 (60) -

Thus, it can be predicted that any error will be
reduced to 37 percent of the initial value by the time
t = 74q. Similar results apply to 3, and 8,.

Since the nonlinear simulation results shown by
the lower line in Figure 4 have the characteristics of

- a typical first order linear system, the value of lin-
-earization is established. This theory provides

a framework under which to choose filter gains.
Broadband noise simulation shows noise reduces
accuracy, but the filter still works wall [4].

Bias Effects

Integration of a biased angular rate signal will
cause a steady state error in a complementary filter.
To reduce this effect, following the approach
described in [28], an initial estimate for bias can he
calculated by averaging rate sensor output prior to
maneuvering and then tracking the time-varying
bias with a very long time constant, low pass filter.

From Figure 5,

‘imensm‘ed 1 8
_ = = (51)
qirus 1+ khius% s+ kh‘ias

x hat {degrees)
ra

3

0 01 02 03 0:4 0:5 0..5 or 08 09 10

Timo (seconds)

Fig. 4-Simulated Nonlinear Filter Response, 10 Degree Offset,
=01 At =01 ,
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which is the equation for a highpass filter with
a 3 db cutoff at

we = kbias (5 2)

Based on the high-pass nature of Eq. (51), it can be
seen that the addition of bias estimation to the
quaternion filter means it will no longer be comple-
mentary [3]. This is evident since constant rotation
rates will over time be eliminated from ¢y, Thus,
k must be greater than zero in Eq. (18) in order to
detect these rates. In [28] it is shown that this effect
can be minimized by applying the constraint

k> kbins ) (53)

Note, however, that if k is too large, the filter may
become unstable or too much maneuver induced
error will appear in §. Thus, for a given ky,,, it can
be expected there will be an optimal k value.

From Eq. (49), it can be seen that k should not be.
too small if the filter is to converge in a reasonable
time period, On the other hand, 7y, must be larger
than the maneuver time constant, T,ueuver, it arder
to adequately suppress maneuver noise. Combining
this result with Eq. (53) leads to the qualitative
Tequirement

Bod}" Mounled Sensors

1/Q Connection
Boards

-Q“Anﬁlog Output

Tmanuever <& Tag & Thing (64)
or
1/ Tmanuever >k> 1/ Thias (55)

This result in addition to Eq. (38) provides guide-
lines for the selection of “reasonable” values for
k and At. With power spectral density functions for
Qe 01, and np, a Kalman filtering approach [8]
could be used for this problem. In the absence of
such statistical information, gain values may be
selected through experimental “tweaking” of the
scalar gain, k, in laboratory studies.

A Simple Prototype System and
Experimental Resuits

The quaternion filter was tested in a prototype
inertial/magnetic posture tracking system. The
system was designed with several goals in mind.
Among these was validation of the quaternion filter
algorithm in a physical system and a demonstration
of the practicality and robustness of real-time iner-
tial and magnetic posture tracking. v

Figure 6 is a diagram of the prototype system
hardware. Depicted are three body-mounted
inertial/magnetic sensor modules outputting analog
signals to three I/O connection boards. The output
from each connection board was digitized by an
associated A/D converter eard. The cards themselves
are mounted in a standard Wintel desktop com-
puter. All data processing and rendering calcula-
tions are performed by software running on this sin-
gle processor machine. In order to ensure sufficient
dynamic response to capture fast human body
motion, the system update rate was maintained at
100 He.

The prototype tracking system was capable of
simultaneously estimating the attitude of three

Display
Menitor

866 Mhz
Pentivm 11
Computer

Fig. 6—Prototype Inertiol | Magnetic Body Tracking System
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rigid-bodies. To track the posture of the entire
human body, approximately fifteen sensor modules
would be required. One sensor would be attached to

each limb segment to be tracked. The exact number

of sensors needed would depend upon the desired
motion tracking detail to be captured.

The body tracking experiments discussed in the
following text were conducted using a MARG-0-2
sensor fapbricated by McKinney Technology [33]. The
primary sensing components are a Crossbow
CX1,04M3 triaxial accelerometer [30], a Honeywell
HMC20038 8-axis magnetometer [31] and three
Tokin CG-16D series miniature angular rate sen-
sors mounted in an orthogonal configuration [32].
The MARG-0-2 incorporates a capacitive coupling
rate bias compensation circuit. [34] describes the
use of a digital filter designed to replace the capaci-
tive coupling circuit. Sensor module calibration for
null values and scale factors was accomplished
without the use of any specialized equipment using

-a simple algorithm. Possible non-orthogonalities

within each sensor triad and misalignments
between the triads were ignored [36].

Quantitative and qualitative experiments to
obtain data related to the accuracy and robustness
of the system under various dynamic and static
conditions have been performed. The static experi-
ments are related to the stability, convergence
properties, and accuracy of the orientation esti-
mates produced by the quaternion attitude filter
algorithm when processing sensor data. The quali-
tative experiments examine the performance of the
system as a whole in relationship to the goal of
robust posture estimation. The performance of the
system while using differential weighting of sensor
data, increased drift correction intervals, and the
effects of magnetic field variations have also been
investigated [4, 37].

Static Stability

The drift characteristics of the quaternion filter
algorithm over extended periods have been evalu-
ated using static tests. Figure 7 graphically depicts
the drift of each of the four components of the

quaternion estimate produced by the filter when .

processing sensor data as well as the rms drift from
the initial orientation quaternion estimate. The
maximum possible difference between two quater-
nions of unit length is 2.0 or 180 deg. It can thus be
observed through examination of Figure 7 that aver-
age total drift is about 0.25 percent. During the
experiment shown, the filter gain, k (Eq. (18)), was
set to 4.0. Reducing the gain to 1.0 increases the
error to 1.0 percent. Further experiments [4] indi-
cated that nearly all drift was due to slowly varying
bias errors in the rate sensors.
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Dynamic Response and Accuracy

Experiments to establish the accuracy of the ori-
entation estimates and the dynamic response of the
gystem were conducted. These experiments were
completed by mounting a MARG sensor on a Hass
rotary tilt table. The test procedure consisted of
repeatedly cycling a sensor through various angles
of roll, pitch, and yaw at rates ranging from 10 to
60 deg/s.

Figure 8is a typical result of the dynamic accuracy
experiments. The estimates produced by the tracking
system are presented in Euler angle form., Accuracy
is measured to be better than one degree. The over-
all smoothness of the plot shows excellent dynamic
response. The small impulses observed each time
motion is initiated are due to linear acceleration

. effects exaggerated by the “whipping” motion of the

non-magrnetic extension on which the sensor module
was mounted during the experiments.
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Fig. 8—Quaternion Filter Attitude Estimates During Negative
80 deg Roll Excursions at 60 Degls, & = 1.0
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The maximum value for k can be quantitatively
established through a geometric series [4]. The max-
imum value for which the filter can be expected to
be stable is

2
km,,x = —A‘t- 37

When working with perfect noiseless data, values
for k greater than 1/At can be expected to cause cor-
rection “overshoots” and oscillations in the attitude
estimate. The effects of varying the filter gain value,
k, are depicted in Figure 9. The same exaggeration
due to the whipping motion of the non-magnetic
extension can be seen. The top sub-plot in which the
filter gain was set to 2.0 shows a smooth plot which
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closely follows the actual motion of the sensor
module. The middle sub-plot shows that the filter is
less able to discriminate against sensor noise with a
gain of 16.0. It is, however, still able to track the
actual motion of the module. In the bottom sub-plot
with a gain of 64.0, the filter estimate overshoots
the rotation significantly following the end of
motion. The overshoot is followed by oscillations for
a period of several seconds. ‘

 In the absence of statistical information, gain
values are selected through experimental “tweak-
ing” of the scalar gain, k, in laboratory studies.
During posture tracking the filter gain is normally

'set through qualitative observation of the system

performance. For normal human motion, a filter
gain of k = 4.0 was found to produce stable and
accurate performance with no observable under-
shoots of overshoots.

Summary and Conclusions

This research has demonstrated an alternative
technology for tracking the posture of an articu-
lated rigid body. The technology is based on the use
of inertial/magnetic sensors to independently
determine the orientation of each link in the rigid
body. At the core of the system is an efficient
complementary filter that uses a quaternion repre-
sentation of orientation. The filter can continu-
ously track the orientation of human body limb
segments through all attitudes without singulari-
ties. Drift corrections are made continuously with
no requirement for still periods. Experimental
results indicate that the filter is both accurate and
efficient.

Current technology has permitted the construc-
tion of sensors that are much smaller than the
prototype modules described here [36]. An optimal
inertial sensor would have the same size and form
factor as a wristwatch. It would include an embed-
ded microprocessor on which the filter algorithm is
implemented as well as an analog to digital con-
verter. The gensor would have a self-contained
power source and would wirelessly transmit orien-
tation data. Efforts are currently being made to
untether the user of the sensor system by feeding
sensor data to a wearable computer. Filter research
has continued with the development of an extended
Kalman Filter for real-time estimation of rigid body
orientation [34, 39]. Quantitative comparisons of the
dynamic and static performance of the algorithms
are currently underway.
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Factored Quaternion Algorithm for Orientation
Estimation from Earth Gravity and Magnetic
Field Measurements

Xiaoping Yun, Fellow, IEEE, Eric R. Bachmann, Member, IEEE, and Robert B. McGhee, Fellow, IEEE

Abstract— Orientation of a rigid body can be determined
from measured gravity and local magnetic field vectors. In hu-
man body tracking applications, where it is assumed linear ac-
celeration will average to zero over any extended period, triads
of accelerometers and magnetometers can be used to measure
gravity and local magnetic field vectors in sensor coordinates.
Pitch and roll can be determined using only acceleromter data.
Due to deviations of the direction of magnetic field vector
between locations, it is desirable to use magnetic data only
in calculations related to the azimuth. The TRIAD algorithm
can be used to algebraically solve this problem. Alternatively,
some formulation of the QUEST algorithm can be used to find
an optimal solution based on a given set of measurements.
This paper presents an intuitive geometric 3-DOF orientation
estimation algorithm with physical meaing, called the factored
quaternion algorithm. Through a derivation based on half-angle
formulas, the algorithm sequentially calculates three angles and
produces a quaternion output to represent orientation. The
use of magnetic data is restricted to determination of rota-
tion about the vertical. Thus, magnetic variations cause only
azimuth errors. A singularity avoidance method is introduced
that allows the algorithm to track through all orientations.
Experimental results demonstrate that the proposed algorithm
has an overall accuracy that is essentially identical to that of
the TRIAD and QUEST algorithms, and has a computational
efficiency that is comparable to the TRIAD and better than
the QUEST.

Index Terms— Motion measurement; inertial sensors; mag-
netic sensors; accelerometers, orientation estimation; QUEST
algorithm; quaternions; factored quaternion algorithm.

I. Introduction

CCURATE real-time tracking of the orientation or

attitude of rigid bodies has applications in robotics,
aerospace, underwater vehicles, synthetic reality, and oth-
ers. For synthetic reality applications, the human body
can be viewed as an articulated rigid-body consisting of
approximately fifteen links. If the orientation relative to
a fixed reference frame can be determined for each of the
links, then the overall posture of the human subject can
be accurately rendered and communicated in real-time.
The orientation of an individual limb segment can be
measured through the attachment of an inertial /magnetic

Xiaoping Yun is with Department of Electrical and Computer
Engineering, Naval Postgraduate School, Monterey, CA 93943, USA.
All correspondence should be addressed to this author.

Eric R. Bachmann is with Department of Computer Science and
System Analysis, Miami University, Oxford, OH 45056, USA.

Robert B. McGhee is with Department of Computer Science and
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sensor module. Such sensor modules typically contain
a triad of orthogonally mounted accelerometers and a
triad of orthogonally mounted magnetometers. Under the
assumption that human limb acceleration is bounded and
averages to zero over any extended period of time, the
accelerometers are used to measure the gravity vector
relative to the coordinate frame of the sensor module.
The magnetometers serve a similar function for the local
magnetic field vector. In dynamic applications, a triad of
angular rate sensors can be added as a high frequency
source of orientation information. The availability, low-
cost, and small-size Micro-Electro-Mechanical Systems
(MEMS) sensors has made it possible to build wrist watch
sized, self-contained inertial/magnetic sensor modules [4],
[15]. These modules can be used to accurately track
orientation in real-time. This technique of orientation
estimation is dependent only on passive measurement of
physical quantities that are directly related to the rate of
rotation and orientation of a rigid body. Since no generated
signals are involved, there are no restrictions on the range
of operation. All latency in such a system is due to the
computational demands of the data processing algorithms.

In body tracking applications based on the use of
small inertial/magnetic sensors [4], the gravity and local
magnetic field vectors are often measured and compared
to reference vectors in order to determine orientation. In
the case of the gravity vector, the assumption that it
is fixed leads to no difficulties since this vector points
straight down in any inertial frame located on or near
the surface of the earth. Making the same assumption
regarding the local magnetic field vector can lead to
problems. In a typical room setting the direction of the
local magnetic field vector can be expected to vary due to
the presence of ferrous objects or electrical appliances. In
inertial/magnetic tracking algorithms, the local magnetic
field vector is commonly treated as a fixed reference. It
is assumed that this reference will remain constant. If it
does not, algorithms may be prone to errors not only in
azimuth, but also in pitch and roll as well.

The TRIAD algorithm [11] is a single frame determin-
istic method for calculating the attitude of a rigid body
relative to a Earth fixed reference frame. The algorithm
requires normalized measurements of two nonparallel ref-
erence vectors as input. Since the problem is overspecified,
the TRIAD algorithm works by throwing away some
components of these measurement vectors. It is used to
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agebraically solve for the 3 x 3 orthogonal orientation
matrix A, such that

by =AFy (1)

where Fv and v are representations of a vector v in

Earth and body coordinates respectively. The algorithm
constructs two triads of orthonomal unit vectors. The two
triads are the components of an inertial frame expressed in
both the body and Earth fixed reference frames. Let a and
bm be accelerometer and magnetometer measurements
relative to the body frame of the the gravity and magnetic
field reference vectors, g and ¥m. The reference vectors
are expressed relative to an Earth fixed frame. The first
triad is given by

51 EQ (2)

. (PgxPm)
= By <P )
S3 = C g|>;£§ XgEXm|m)) (4)

The second triad is given by

’f‘l :b a (5)
bCL b m
fy = W (6)
bCL ba b m
o= ®

The triads are then used to create measurement and
reference matrices such that

Mpea = [F1 T2 73] Myey = [31 52 83] (8)

The orientation matrix, A, representing the attitude of a
rigid body is then simply

A= Mpea Mg (9)

It should be noted that if the measurements of the gravity
and the magnetic field are ordered as described above the
cross-products used to caculate S and 792 eliminate any
contribution of the magnetic measurements relative to the
vertical. Thus, pitch and roll components of orientation
are determined using only acceleromter measurements.

The QUEST (QUaternion ESTimator) algorithm is
an optimal algorithm for single-frame estimation of a
quaternion that represents the attitude of a rigid body
relative to a fixed coordinate system. The algorithm was
created to solve Wahba’s problem [10] in the context
of spacecraft attitude determination. Given a set of 3-
dimensional known reference unit vectors Vi, Vs, ..., V,,,
and a set of the corresponding observation or measurement
unit vectors Wy, Wa, ..., W,, (which could be the direction
of the sun or a star observed from a spacecraft measured
in the spacecraft’s body frame), Wahba’s problem is to
find the least squares estimate of spacecraft attitude by
minimizing the following loss function

L(A) = % iai(Wi — AV)T(W; — AV;) (10)

with respect to the 3 x 3 orthogonal orientation ma-
trix A, where ai, asg,..., a, are nonnegative weighting
coefficients. The minimum number of measurement and
reference vector pairs is two. Early solutions to Wahba'’s
problem directly computed the orientation matrix A [12].
Davenport [13] introduced a method of parameterizing the
orietation matrix by a unit quaternion ¢, and proved that
the loss function (10) can be transformed into a quadratic
gain function of the unit quaternion in the form of

n
= E a/i —
i=1

where K is a 4 x 4 matrix constructed from the refer-
ence vectors V;, measurement vectors W;, and weighting
coefficients a;, ¢« = 1, 2, ..., n. Based on Davenport’s
work, Shuster and Oh derived the QUEST algorithm
[11], and showed that the optimal quaternion ¢ that
maximizes the gain function (11) while satisfying the unit
quaternion (unit norm) constraint is the eigenvector of the
K matrix corresponding to the largest eigenvalue of K.
Thus, the problem is reduced to finding the eigenvalues
and eigenvectors of a 4 x 4 matrix.

Extensive research has been conducted to investigate
the use of inertial/magnetic sensor modules for posture
estimation in human body tracking applications. Foxlin
et al. describes two commercial systems based on the
use of sensor modules containing accelerometers, magne-
tometers, and angular rate sensors [1], [2]. The described
algorithm is designed for head tracking applications and
requires still periods to correct for inertial drift. Bachman
et al. proposed a quaternion-based complementary filter
for human body motion tracking [3], [4]. The filter is able
to track through all orientations without singularities and
continuously correct for drift without a need for stationary
periods using data from inertial/magnetic sensor module
containing nine sensors. Gallagher et al. presents a simpler
complementary filter algorithm with lower computational
complexity in [5]. Luinge describes a Kalman filter de-
signed for human body tracking applications. The filter
is based on the use of only accelerometers and rate
sensors. Drift about the vertical axis is reduced by limiting
body segment orientation using a kinematic human body
model [6]. Rather than estimating individual limb segment
orientations relative to an Earth fixed reference frame,
Zhu and Zhou determine joint angles in axis/angle form
using the data from the two nine-axis sensors mounted on
the inboard and outboard sides of the joint [7]. Yan and
Yuan describe an orientation tracking algorithm that uses
low cost sensor modules to take two axis measurements
of gravity and the local magnetic field [8]. In a manner
similar to the method described in this paper, elevation,
roll and azimuth angles are sequentially calculated. The
angles are used to construct rotation matrices and the
use of trigonometric functions is required. The method is
limited to orientation tracking within a hemisphere. In [9],
Gebre-Egziabher et al. describe an attitude determination
algorithm for aircraft applications. The algorithm is based
on a quaternion formulation of Wahba’s problem [10],

)=q"Kq (11)
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where magnetometer and accelerometer measurements are
used to determine attitude.

This paper presents an alternative algorithm for es-
timating orientation based on a set of measurements
from triads of orthogonally mounted magnetometers and
accelerometers. It is called the factored quaternion algo-
rithm (FQA). It is a intuitive alternative to the TRIAD
and QUEST slgorithms. Local magnetic field data is
used only in azimuth angle calculations. This decoupling
of accelerometer and magnetometer data eliminates the
influence of magnetic variations on calculations that de-
termine pitch and roll. Through a derivation based on
half-angle formulas, the computational cost of computing
trigonometric functions is avoided. The algorithm pro-
duces a quaternion output. It is able to track through
all orientations without singularities. Experimental results
in which the factored quaternion algorithm is compared
with the TRIAD and QUEST algorithms indicate that it
has nearly identical accuracy at a comparable or lower
computational expense.

The primary contributions of this work are:

e Derivation of a new geometrically intuitive algorithm
for determining orientation relative to an Earth fixed
reference frame based on a set of accelerometer and
magnetometer measurements.

o A singularity avoidance method that allows the algo-
rithm to track through all orientations.

o Experimental results which validate the performance
of the algorithm and compare it to more established
methods.

The rest of this paper is organized as follows. Section
II presents a derivation of the factored quaternion al-
gorithm. Section IIT describes experiments in which the
factored algorithm is compared to the QUEST algorithm
for efficiency and accuracy. The ability of the algorithm
to track through all orientations without singularities is
demonstrated as is it’s decoupling property. The final
section discusses the experimental results and provides
a summary.

II. Factored Quaternion Algorithm

The factored quaternion algorithm presented in this
section is for estimating the orientation of a rigid body
based on Earth gravity and magnetic field measurements
[14]. Sensor modules such as the MARG III described
in [15] contain a triad of accelerometers and a triad of
magnetometers, and can be used to provide measurement
data for the factored quaternion algorithm.

In a typical application, a sensor module is employed as
a strap down inertial measurement unit (IMU) attached
to a rigid body whose orientation is to be determined.
To facilitate the analysis, it is convenient to define three
coordinate systems. An Earth-fixed coordinate system
XeYeZe 18 defined to follow the North-East-Down (NED)
convention, that is, x. points to north, y. points to east,
and z. points down. A body coordinate system xpypzp
is attached to the rigid body whose orientation is to

be measured. The sensor module has its own coordinate
system xgyszs corresponding to the axes of three orthog-
onally mounted accelerometers/magnetometers. Since the
sensor module is rigidly attached to the rigid body, the
body coordinate system xpypz, differs from the sensor
coordinate system x;yszs by a constant offset. For the
convenience of discussions, in what follows, the body
coordinate system is assumed to coincide with the sensor
coordinate system.

A. Quaternion Rotation Operator

Unit quaternions can be used to perform rotation oper-
ations in the 3-D space [16]. In this paper, the following
notation will be used to represent a quaternion g:

g=(q0 @1 2 ¢3) (12)

where qo is the scalar (or real) part and [¢1 ¢q2 g3]T is
the vector part. Let

U
u = u2
us

(13)

be a unit vector in the 3-D space. The following unit
quaternion

qzcosg(l 00 O)—l—sing(o up Uz usz) (14)

is commonly utilized to perform rotation operations.
Specifically, for any vector v = [v; vz w3]? in the 3-
dimensional space, the following operation

v =qug " (15)

produces a vector v’ by rotating the vector v about the axis
defined by u by an angle . In the above, all multiplications
are quaternion multiplications, and v and v’ are treated
as a pure quaternion whose real part is zero. ¢~' is the
inverse quaternion of ¢ [16].

B. Elevation Quaternion

A rigid body is said to be in its reference orientation
when its xpyzp-axes are aligned with those of the Earth
coordinate system. It is known that a rigid body can be
placed in an arbitrary orientation by first rotating it about
its z-axis by an angle ¢ (azimuth or yaw rotation), then
about its y-axis by angle 6 (elevation or pitch rotation),
and finally about its x-axis by angle ¢ (bank or roll
rotation).

In order to derive a quaternion describing only elevation,
it is useful to note that when a rigid body is moving at
a constant velocity and is in a fixed orientation, then an
accelerometer measures only gravity. Furthermore, the x-
axis accelerometer senses only the component of gravity
along the x-axis, and this component in turn depends only
on elevation angle. This can be seen from the following
argument. Starting with the rigid body in its reference
orientation, the x-axis accelerometer is perpendicular to
gravity and thus registers zero acceleration. The y-axis
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accelerometer also reads zero while the z-accelerometer
reads -g. If it is then rotated in azimuth about its z-axis,
the x-axis accelerometer still reads zero, regardless of the
azimuth angle. If the rigid body is next pitched up through
an angle 0, the x-axis accelerometer will read:

a; = gsinf (16)
and the z-axis accelerometer will read:
a, = —gcosb (17)

where g = 9.81m/s? is the gravitational acceleration, and

Gy

(18)

is the acceleration vector in the body coordinate system.
For convenience, the accelerometer and magnetometer
output from a sensor module is normalized to a unit vec-
tor. Let a denote the normalized vector of the acceleration
measurements:

a Og
az

where |a| is the norm of the acceleration vector a. It follows
from equation (16) that the value for sin 6 can be expressed
as:

sinf = a,. (20)
The value for cosf can be computed from
cos = /1 —sin’ 6. (21)

It should be noted that a positive value for cos @ is assumed
in the above equation. This is because the elevation angle
6 is by convention restricted to the range of —7/2 <0 <
/2. Tt is noted that if the rigid body is rolled about its
x-axis, equation (17) will change, but equation (16) will
remain the same. This means that equation (16) holds for
any orientation of the rigid body.

In order to obtain an elevation quaternion using equa-
tion (14), a value is needed for sin(6/2) and cos(6/2).
From trigonometric half-angle formulas, half-angle values
are given by

sin 7 = sign(sin #)+/ (1 — cos ) /2 (22)
cos g = (14 cos®)/2 (23)

where sign() is the sign function that returns +1 for
positive arguments and -1 for negative arguments. The
sign function is not needed in equation (23) since cos(0/2)
is always positive within the elevation angle range.

Elevation is a rotation about y-axis. The unit quaternion
representing elevation motion can now be computed using
equation (14) and values for the half angle trigonometric
functions as follows:

0 0
qezcos§(1 00 O)—I—sini(() 01 0). (24)

C. Roll Quaternion

The acceleration measured by the z-axis accelerometer
with roll angle ¢ = 0 is given by equation (17). Changing
azimuth does not alter this measurement, but changing
roll does. A more general formula for y-axis accelerometer
reading is:

ay = —gcosfsin¢. (25)
Likewise, the z-axis accelerometer will read:
a, = —gcosfcos . (26)

In terms of the normalized acceleration measurement, the
two equations above can be written as:

ay, = —cosfsing (27)

a, = —cosfcos¢ (28)

where the value for cos @ was determined in equation (21).
If cosf is not equal to zero, the values of sin¢ and cos ¢
can be easily determined by:

sing = —ay,/cosf (29)

cos¢p = —a,/cosh. (30)

If cosf is equal to zero, it means that x-axis of the body
coordinates is vertically oriented. In such cases, the roll
angle is undefined and it can be assumed to have a value
equal to zero. The range of the roll angle ¢ is by convention
restricted to —m < ¢ < 7. The half angle values for ¢ can
be computed in a manner similar to equations (22) and
(23) with one exception. When cos¢ = —1 and sin¢ = 0,
the use of equations (22) and (23) will result in a value
of zero for both sin(¢/2) and cos(¢/2). This case can be
treated in implementation by assigning a value of one
to the sign function when its argument is zero. Having
obtained the half angle values for the roll angle ¢, the roll
quaternion is computed as follows:

¢ ¢

qT:cos§(1 00 0)+sin§(0 10 0). (31)

D. Azimuth Quaternion

Since azimuth rotation has no effect on the estimation
of roll or elevation quaternions from accelerometer data,
the strategy to be employed in this paper for azimuth
quaternion estimation is to first solve for the elevation
and roll quaternions. These can then be used to rotate
the normalized magnetic field measurement vector in the
body coordinate system

bmw
b bmy

bmz

(32)

into the Earth coordinate system by the quaternion
rotation operation:

(33)

‘m=qe g "'magt gt

In the above, m stands for the pure quaternion of the
3-dimensional vector itself, i.e., m = (0 *m, ®m, "m.).

The same convention is used for ¢m. In the absence of
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measurement error, “m should agree with the known local
normalized magnetic field vector n = [n, n, n.]T,
except for the effects of azimuth rotation on the sensor
magnetometer readings. In such a case, n, = “m, and

Ng | | cosy —siny My

{ny}_[sinw cosw}[emy]
where 1 is the azimuth angle. Before proceeding further,
it should be noted that equation (34) implies that the
two 2-dimensional vectors differ only in orientation. In
fact, experimental data show that, in the presence of
measurement noise, they may also differ in length. To
compensate for this effect, the vectors on both sides of
equation (34) can be normalized. Specifically, let the
normalized local magnetic field reference vector in the
horizontal plane be:

vl e
and the corresponding quantity measured by the magne-
tometer be:

(34)

(35)

- ) .
e []e ]
y /em% + emg My
With these definitions, equation (34) becomes:
N, | [ cosyp —sine M, (37)
Ny | | sinyy  cosy M,

from which the value of cos and sint can be solved as:

cosy | M, M, N,
siny | | =M, M, Ny |°
The azimuth angle v is restricted to the range —7m < ¢ <
7. The half angle formulas given by equations (22) and

(23) can again be used to compute the half angle values
of ¢. The azimuth quaternion is then given by:

qa:cos%(l 00 O)—I—sin%(() 00 1).

(38)

(39)

Having obtained all three rotation quaternions, the
quaternion estimate representing the orientation of the
rigid body is finally given by:

4 = qa Ge qr- (40)

E. Singularity Avoidance in Implementation

The factored quaternion algorithm presented above
takes the normalized acceleration measurement vector and
local magnetic field measurement vector as its input, and
produces a quaternion as its output. It is a single-frame
algorithm, that is, it takes measurements at a single
instant of time, and produces an output. It does not
require a history of measurements at multiple instants
of time.

From the two measurement vectors, the half angle
value of each rotation angle is first computed. Then the
corresponding quaternion for each rotation is computed.
Finally, the overall orientation quaternion is computed by

Estimated roll-pitch-yaw angles and singularity conditions
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Fig. 1. Roll, pitch, yaw angles, singularity condition, and switch
flag during a 180° rotation in pitch axis with ideal simulated data.

equation (40). It should be emphasized that the algorithm
does not evaluate trigonometic functions at any step.

Although quaternions when used to represent the 3-
dimensional orientation do not have singularities, the
factored quaternion algorithm described above uses three
angles to derive the quaternion estimate. It is known that
any three-parameter representation of the 3-D orientation
is inevitably singular at some point [17]. Without excep-
tion, the factored quaternion algorithm has a singularity,
so does the QUEST algorithm. The QUEST algorithm
uses the Gibbs vector

1 q1
p=—| @ (41)
@ a3
in its derivation and is at a singular point if go = O.

A method similar to the method of sequential rotations
discussed in [18] is described below to avoid singularities
in the numerical implementation. A singularity occurs in
the factored quaternion algorithm if the elevation angle
is +90°. This happens when cosf = 0 or equivalently
a, = 0 in equations (29) and (30). In implementation,
the first step of the algorithm is to check the value of a,.
If the absolute value of @, is smaller than a predefined
constant € (e.g., e = 0.1), the procedures described below
are implemented to circumvent the numeric difficulty of
having a small number in the denominator.

If a, < ¢, the elevation angle is close to £90°. The nor-
malized acceleration measurement vector a and magnetic
field measurement vector m in the body frame will be
rotated about the body coordinate y,-axis by an angle
a to obtain the following offset (rotated) measurement
vectors:

Ao fiset

Meotfset =
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where ... is the offset (rotation) quaternion given by

qa:cos%(l 00 O)—i—sin%(o 010). (44)

Under the condition of a, < e, the offset measurement
vectors will be used in place of the original measurement
vectors to carry out the factored quaternion algorithm.
The resultant orientation quaternion estimate from equa-
tion (40) in this case is called §.y,.

The value of a can be chosen arbitrarily as long as it is
sufficiently away from zero. It is chosen to be 20° in this
discussion. Rotating measurement vectors about y-axis by
20° is equivalent to rotating the (original) body coordinate
system xpypzp to a temporarily offset body coordinate
system x}y;z; about y,-axis by -20°. §.. represents the
orientation of x;y;z; in the Earth coordinate system. The
quaternion estimate ¢ representing the orientation of the
original body coordinate system xpypzp is given by the
following compound quaternion (i.e., rotating x;y;z; back
to xpypzp about yj-axis by 20°):

q= qAalt Go- (45)

To demonstrate how the singularity avoidance method
described above works, ideal measurements as well as
noisy measurements for a 180° rotation in pitch axis were
synthetically generated. Figure 1 shows the results with
ideal measurements. The top three plots are trajectories
of roll, pitch, and yaw angles. The bottom two plots depict
the value of cosf and the switch flag. The value of cos@ is
an indication of the singularity condition, and the switch
flag indicates when the singularity avoidance method is
invoked. As expected, the pitch angle increases from 0 to
90° while the roll and yaw angles remain at zero during
the first half period. As the pitch angle approaches 90°,
the value of cos6f drops nearly to zero. When cosf is
less than e (whose value is chosen as 0.1 in this testing),
the singularity avoidance method is activated during the
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Fig. 2. Roll, pitch, yaw angles, singularity condition, and switch flag
during a 180° rotation in pitch axis with noisy simulated data. The
parameters used are: € = 0.1 and the offset angle a = 20 degrees.
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Fig. 3. Components of the estimated quaternion during a 180°
rotation in pitch axis with noisy simulated data.

period of sample numbers from about 820 to 980 as seen
in Figure 1. During this period, the value of cos# is lifted
upwards to be away from zero. The value of the offset
angle « is chosen to be 20°.

Owing to the conventional choice, the pitch angle is
limited from -90° to 90°. As a result, the orietation of
a 95° pitch, 0° roll, and 0° yaw is depicted as 85° pitch,
180° roll, and 180° yaw in Figure 1. This is the reason why
the pitch angle increases from 0 to 90° and then decreases
from 90° to 0 while the actual rotation increases from 0
to 180°.

Figure 2 shows the results with noisy measurements
for the same rotational motion as in Figure 1. Noises
were introduced using a random number generator. It
is noted that the switch flag flipped many times, and
the value of cosé was kept above ¢ = 0.1 at all times.
The trajectory of the pitch angle follows the same rise
and fall pattern as in Figure 1 except with added noise.
The roll and yaw angles flipped from 0 to 180° numerous
times, signifying that the pitch angle jumped above and
below 90°. Figure 1 and Figure 2 plot the trajectory of
the roll, pitch, and yaw angles for visualization purposes.
Although there are jumps in roll and yaw, there are no
jumps in the trajectory of the estimated quaternion as seen
from the corresponding plot of the estimated quaternion
components shown in Figure 3.

ITI. Experimental Results

The experimental results described in this section com-
pare the factored quaternion and QUEST algorithms.
They also exhibit the unique properties of the factored
quaternion algorithm. The first set of experiments con-
stitutes a side-by-side comparison of the two algorithms
for static and dynamic accuracy. In these experiments,
an inertial/magnetic sensor module was subjected to
a series of known rotations at several different rates.
Both the factored quaternion and QUEST algorithms
were tested first using raw accelerometer data and then
low-pass filtered data. The second set of experiments
demonstrate the effectiveness of the singularity avoid
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method presented in the previous section. The third
set of experimental results demonstrates the decoupling
property of the factored quaternion algorithm. In these
experiments a stationary inertial/magnetic sensor module
was subjected to a magnetic field exhibiting a varying
direction and magnitude by moving a ferrous object in the
vicinity of the sensor module. Finally a rough comparison
of the computational efficiency of the QUEST and factored
quaternion algorithms is made.

Sensor data for the experiments was collected using a
MARG III inertial/magnetic sensor module which was
designed by the authors and fabricated by McKinney
Technology [15]. Primary sensing components for this unit
include a pair of two axis Analog Devices ADXL202E mi-
cromachined accelerometers, and Honeywell HMC10517Z
and HMC1052 one and two-axis magnetometers. Overall,
dimensions of the MARG III unit are approximately 0.7” x
1.27x1.0”. Though the MARG III units contain angular
rate sensors, no rate data was used in the experiments
described in this paper.

A. Testing of Static and Dynamic Accuracy

Controlled rotations of the sensor modules were per-
formed by placing an inertial/magnetic sensor module
on a HAAS precision tilt table. The table has two
degrees of freedom and is capable of positioning with
an accuracy of 0.001 degrees at rates ranging from 0.001
to 80 degrees/second. In order to mitigate any possible
magnetic effects generated by the steel construction of the
tilt table, the sensor unit was mounted on a non-ferrous
extension above the table. In each of these experiments,
the sensor module was initially placed with its xsyszs axes
respectively aligned with the North-East-Down directions.
Following an initial still period, the senor module was then
subjected to a series of rotations.
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Fig. 4. Orientation estimate produced by the QUEST and factored
quaternion algorithms with a 90° rotation in roll axis using raw
accelerometer data.
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Estimate from QUEST algorithm Estimate from factored quaternion

100 100
T 50 7 50
© ®
g o g o
Q Q
é > L/_/U E > #\J—L[
-100 -100
0 500 1000 1500 0 500 1000 1500
100 100
7 7
o4 50 o3 50
> <3
g o s o
] ]
g .50 £ 50
o o
-100 -100
0 500 1000 1500 0 500 1000 1500
100 100
2 50 2 50
o o
53 3
g o J;V—/L\F g o JLV_M\[_
z z
& 50 & 50
-100 -100
0 500 1000 1500 0 500 1000 1500

Sample number Sample number

Fig. 6. Orientation estimate produced by the QUEST and factored
quaternion algorithms with a 90° rotation in roll axis using low-pass
filtered accelerometer data.

Figure 4 shows the performance of the each of the two
algorithms using raw accelerometer and magnetometer
data. The sensor was rotated -90° about the x-axis at
a rate of 60°/s and then rotated 90° at the same rate (in
the reverse direction) for two cycles. The plots to the left
show the orientation estimated by the QUEST algorithm,
and the graphs to the right show the orientation estimated
by the factored quaternion algorithm. The small pitch and
yaw motions seen in the pitch and yaw sub-plots are due to
misalignment of the sensor module with the motion axes
of the tilt table. It can be seen that both algorithms were
able to correctly estimate the roll angle before the first
(negative) rotation, between the first and second (positive)
rotations, and after the second rotation. Neither was able
to correctly estimate orientation during rotational motion.
Similar results where observed in experiments involving
different angles of rotation at different rates.

During motion the accelerometers measure the sum of
gravity and motion induced acceleration. In the case of the
experiments described here, the motion induced accelera-
tion is due to the motion of the tilt table and flexing of
the non-ferrous extension on which the sensor module was
mounted. Since both the QUEST and factored quaternion
algorithms are single-frame algorithms, neither is able to
filter out transient non-gravitational accelerations that
occur during motion.

Figure 5 depicts a revised approach in which a low-
pass filter for accelerometer data is combined with the
factored quaternion or QUEST algorithm. To examine the
performance of the QUEST and factored quaternion algo-
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Fig. 8. Components of the estimated quaternion produced by the
factored quaternion algorithm during 110° rotation in pitch axis.

rithms in conjunction with a low-pass filter, the rotation
experiments were repeated. Figure 6 shows performance
during 90° rolls at a rate of 60°/s. A comparison of Figure
6 to Figure 4 in which the sensor module was subjected
to the same rotations shows that either algorithm can be
used to track the orientation of a rigid-body in a dynamic
environment when acceleration data is low-pass filtered.
Again, similar results where observed in experiments
involving different angles of rotation at different rates.

B. Avoidance of Singularity Conditions

Within the factored quaternion algorithm, three half
angles are used to derive an orientation quaternion.
Measurement vectors are rotated by an angle o when
the pitch angle approaches +90° and the cos# approaches
zero. Figures 7 and 8 respectively depict the operation of
the factored quaternion algorithm and its output during
110° pitch rotations. During this experiment, « was set to
45° and € was 0.2. The bottom two subplots of Figure 7
trace the value the cosf and the value of the switch flag
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Fig. 9. Components of the normalized local magnetic field measure-
ment vector under the influence of a moving magnetic field distortion.
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Fig. 10. Orientation estimate produced by the QUEST and
factored quaternion algorithms with a static sensor module under
the influence of a moving magnetic field distortion.

that triggers the singularity avoidance method and show
the direct correspondence between the two in time. It can
be observed that each time cosf was about to become
less than €, the switch flag was set to one. The top three
subplots in Figure 7 depict the angles calculated from
the quaternion estimate produced by the algorithm. The
apparent rise of the pitch angle to 90° and then drop to 70°
is a visualization artifact due to the use of the three angles
for plotting purposes. 110° pitch is represented as 70° pitch
together with a 180° roll and a +£180° yaw. At times the
yaw angle flips between two alternate representations of
the same rotation, namely -180° and 180°. The roll angle
is stable at either 0° or 180°.

The quaternion elements depicted in Figure 8 are
smooth and exhibit no flipping of orientation represen-
tations or singularity artifacts. The real part of the
quaternion, gqg, begins at 1.0 and changes to cos% =
0.5736 during the 110° rotations. The element of the unit
quaternion associated with rotations about the pitch axis,
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g2, begins at zero and changes to sin % = (0.8192 during
the 110° rotations. The small changes in ¢; and g3 are
due to misalignment between the sensor module and the

motion axes of the tilt table.

C. Testing of Static Accuracy When Subjected to Mag-
netic Field Variations

To test the decoupling property of the factored quater-
nion algorithm, an inertial/magnetic sensor module was
mounted on a level non-ferrous stationary platform. The
sensor module x,yszs-axes were respectively aligned with
the North-East-Down directions. Following an initializa-
tion period, the sensor module was exposed to a ferrous
object. Movement of the ferrous object caused the di-
rection of the measured magnetic field to change by as
much as 360°. Changes in the measured magnetic field
were observed in all measurement axes as illustrated by
Figure 9. Figure 10 shows orientations calculated using
the QUEST and factored quaternion algorithms. It can
be observed that the orientations calculated using the
QUEST algorithm (depicted by three subplots to the
left) exhibited errors on all axes. On the other hand, the
factored quaternion algorithm (depicted by three subplots
to the right) showed no errors in either the pitch or roll
axes.

D. Algorithm Efficiency

To make a rough comparison of the efficiency of the
QUEST and factored quaternion algorithms, the time
required for each to complete the computation of 5000
orientation quaternions was determined. This number
represents 50 seconds of data at a sampling rate of 100
Hz. Both algorithms were able to complete the 5000
quaternion calculations in less than 10 seconds. The
calculations were completed in 9.8 seconds by the QUEST
algorithm and 7.8 seconds by the factored quaternion
algorithm. In this experiment, the factored quaternion
algorithm was approximately 25% faster that the QUEST
algorithm.

IV. Conclusion

The paper has presented a intuitive algorithm for calcu-
lating orientation using accelerometer and magnetometer
data. The algorithm produces estimates in quaternion
form through a series of sequential rotations. In the algo-
rithm, magnetometer data is not used to calculate orienta-
tion relative to the vertical, thus magnetic variations result
in errors only in the horizontal plane. This property of the
algorithm is demonstrated experimentally. Singularites in
the numerical implementation are avoided through the use
of a method that assigns an offset body coordinate system
when a singularity occurs. The algorithm is efficient and
does not require the evaluation of trigonometric functions.
Experimental results indicate that when combined with
a low-pass filter for accelerometer data, the algorithm is
able to track orientation of a human limb segment. The
algorithm has been successfully used in real-time human
body motion tracking applications.

Acknowledgments

This research was supported in part by Army Re-
search Office (ARO). Authors would like to thank James
Calusdian for his technical support during the course of
this project, Andreas Kavousanos-Kavousanakis for im-
plementing the QUEST algorithm, and Conrado Aparicio
for implementing the factored quaternion algorithm.

References

[1] E. Foxlin, M. Harrington, and Y. Alshuler, “Miniature 6DOF
inertial for track hmds,” in SPIE vol. 3362, Helmet and Head-
Mounted Displays III, AeroSense 98, Orlando, FL, Apr. 1998.

[2] E. Foxlin, “Inertial head-tracker fusion by a complementary
separate-bias Kalman filter,” in Virtual Reality Annual Inter-
national Symposium (VRAIS 96), Santa Clara, CA, Mar. 1996,
pp. 185-194.

3] E. R. Bachmann, “Inertial and magnetic tracking of limb
segment orientation for inserting humans into synthetic en-
vironments,” Ph.D. dissertation, Naval Postgraduate School,
Monterey, CA, 2000.

[4] E. R. Bachmann, R. B. McGhee, X. Yun, and M. J. Zyda,
“Inertial and magnetic posture tracking for inserting humans
into networked virtual environments,” in Proceedings of the
ACM Symposium on Virtual Reality Software and Technology
(VRST 2001), Banff, Alberta, Canada, Nov. 2001, pp. 9-16.

[5] A. Gallagher, Y. Matsuok, and A. Wei-Tech, “An efficient
real-time human posture tracking algorithm using low-cost
inertial and magnetic sensors,” in Proceedings of 2004 IEEE
International Conference on Robotics and Automation, Sendai,
Japan, Sept. 2004, pp. 2967-2972.

(6] H. J. Luinge, “Inertial sensing of human movement,” Ph.D.
dissertation, University of Twente, Dec. 2002.

[7] R. Zhu and Z. Zhou, “A real-time articulated human motion
tracking using tri-axis inertial /magnetic sensors package,” IEEE
Transactions on Neural Systems and Rehabilitation Engineer-
ing, vol. 12, no. 2, pp. 295-302, June 2004.

[8] Z. Yan and K. Yuan, “An orientation tracking algorithm valid
in a hemisphere space based on gravity field and earth magnetic
field,” in Proceedings of the 2004 IEEEInternational Conference
on Information Acquistion, Hefei, China, June 2004, pp. 236—
239.

[9] D. Gebre-Egziabher, G. H. Klkaim, J. Powell, and B. W.
Parkinson, “A gyro-free quaternion-based attitude determina-
tion system suitable for implementation using low cost sensors,”
in Proceedings of IEEE 2000 Position Location and Navigation
Symposium, San Diego, CA, Mar. 2000, pp. 185-192.

[10] G. Wahba, “Problem 65-1: A least squares estimate of satellite
attitude,” SIAM Review, vol. 7, no. 3, p. 409, July 1965.

[11] M. D. Shuster and S. D. Oh, “Three-asix attitude determination
for vector observations,” Journal of Guidance and Control,
vol. 4, no. 1, pp. 70-77, 1981.

[12] J. Farrell and J. Stuelpnagel, “A least squares estimate of
spacecraft attitude,” SIAM Review, vol. 8, no. 3, pp. 384-386,
1966.

[13] P. Davenport, “Attitude determination and sensor alignment
via weighted least squares affine transformations,” in NASA X-
514-71-312, Goddard Space Flight Center, Greenbelt, Maryland,

1965.

[14] R. B. McGhee, “The factored quaternion algorithm
for  orientation  es-timation from = measured earth
gravity and magnetic field,” MOVES Institute,
Naval Postgraduate School, Monterey, CA,
Technical ~ Memorandum,  2004. [Online].  Available:

http://www.users.muohio.edu/bachmaer/Papers/Factored %20
Quaternion.pdf

[15] E. R. Bachmann, X. Yun, D. McKinney, R. B. McGhee, and
M. J. Zyda, “Design and implementation of MARG sensors for
3-DOF orientation measurement of rigid bodies,” in Proceed-
ings of 2003 IEEE International Conference on Robotics and
Automation, Taipei, Taiwan, May 2003.

[16] J. B. Kuipers, Quaternions and Rotation Sequences. Princeton,
NJ: Princeton University Press, 1999.



REGULAR PAPER SUBMISSION TO JOURNAL OF ROBOTIC SYSTEMS 2006

[17] J. Stuelpnagel, “On the parameterization of the three-
dimensional rotation group,” STAM Review, vol. 6, pp. 422—430,
1964.

[18] M. D. Shuster and G. A. Natanson, “Quaternion computation
from a geometric point of view,” Journal of the Astronautical
Sciences, vol. 41, no. 4, pp. 545-556, 1993.

10



Self-contained Position Tracking of Human Movement Using
Small Inertial/Magnetic Sensor Modules

Xiaoping Yun, Eric R. Bachmann, Hyatt Moore IV, and James Calusdian

Abstract—Numerous applications require a self-contained
personal navigation system that works in indoor and outdoor
environments, does not require any infrastructure support, and
is not susceptible to jamming. Posture tracking with an array of
inertial/magnetic sensors attached to individual human limb
segments has been successfully demonstrated. The *"sourceless
nature of this technique makes possible full body posture
tracking in an area of unlimited size with no supporting
infrastructure. Such sensor modules contain three orthogonally
mounted angular rate sensors, three orthogonal linear
accelerometers and three orthogonal magnetometers. This
paper describes a method for using accelerometer data
combined with orientation estimates from the same modules to
calculate position during walking and running. The periodic
nature of these motions includes short periods of zero foot
velocity when the foot is in contact with the ground. This pattern
allows for precise drift error correction. Relative position is
calculated through double integration of drift corrected
accelerometer data. Preliminary experimental results for
various types of motion including walking, side stepping, and
running document accuracy of distance and position estimates.

I. INTRODUCTION

OSITION tracking of human movement commonly

requires an unrestricted line of sight between one or more
receivers and one of more transmitters. In inside-out systems
a sensor attached to a person to be tracked, passively or
actively receives information from multiple “sources”
positioned around a tracking volume. In outside-in tracking
systems, multiple sensors positioned around a tracking
volume sense active or passive sources attached to the object
to be tracked. The global positioning system (GPS) is a
familiar example of a sourced inside-out tracking system.
Optical tracking systems that use multiple cameras to view
active or passive markers and calculate position through
triangulation are an example of a sourced outside-in tracking
system.

Inside-out or outside-in tracking systems require extensive
set-up and calibration of the tracking volume. Line of site and
noise restrictions limit range as well as where these systems
can be used. In some cases jamming or intentional
interference makes their use impractical. “Sourceless”
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systems are self-contained. Data that are produced by sensors
attached to a person can be used to calculate position without
reference to other devices or transmitters. In theory, a
sourceless system with accuracy comparable to a sourced
system is superior since it does not require extensive
infrastructure positioned around or above a tracking
environment of limited sized and is not susceptible to line of
sight restrictions between a transmitter and source.

Sourceless  orientation  tracking using  small
inertial/magnetic sensor modules containing triads of
orthogonally mounted accelerometers, angular rate sensors,
and magnetometers has been successfully demonstrated.
Several commercial posture tracking systems based on
orientation tracking have resulted. The individual sensors
used in inertial/magnetic sensor modules are low-cost
Micro-Electro-Mechanical Systems (MEMS) sensors. Low
cost MEMS accelerometers are susceptible to drift errors.
Until recently, it was widely thought that position tracking
using data from such accelerometers was not possible due to
the quadratic growth of errors caused by sensor drift during
double integration.

Most types of human movement including walking, side
stepping, and running include repeated recognizable periods
during which the velocity and acceleration of the foot are
zero. These brief periods occur before entering the swing
phase of the gait cycle each time the foot contacts the ground
during the stance phase. Recognition of these periods allows
determination of the drift error that occurred in between them.
This allows precise corrections to be made to accelerometer
data in either a forward or backward manner. The corrected
accelerometer data combined with magnetic and angular rate
data can then be used to calculate the direction and magnitude
of displacement that occurs during each step. This allows
accurate measurement of position relative to an initial starting
point.

This paper describes a self-contained method for relative
position tracking of a human engaged in various types of
motion involving discrete steps. This method is based on the
use of a single inertial/magnetic sensor module attached to the
foot. The primary contributions of this work are:

e A method for tracking 2-D and 3-D position of human
movement using a self-contained inertial/magnetic
sensor module.

e Preliminary experimental results for various human
motion including straight line walking, circular walking,
side stepping, backward walking, running, and climbing
stairs.

This remainder of this paper describes in detail how



accelerometer data in conjunction with orientation estimates
produced using data from inertial/magnetic sensor modules
can be used to track human position in three dimensions
without any supporting infrastructure. Section Il presents
related work and describes the foundation on which the work
presented here is built. Section I11 is a detailed description on
the sourceless position tracking method. Experimental results
are presented in section IV. The final section is a summary
and conclusions.

Il. BACKGROUND

Much research has focused on using inertial and in a few
cases magnetic sensors to measure distance walked and/or
track position. Many methods have involved attempts to
count steps and estimate distance based on an approximate
step length. Other work has double integrated acceleration
data recorded during the gait swing phase to estimate
distance. Few have attempted to determine the direction of
motion. In most cases, distance estimation errors when using
more complex inertial sensor combinations have been only
slightly better than those obtained using commercial
pedometers.

Simple pedometers focus on counting steps. Based on
this step count and a fixed step length, a pedometer unit can
estimate distance traveled. In pedometers, step count is
generally estimated by measuring vertical acceleration using
a single axis piezo-electric accelerometer or by monitoring a
spring suspended horizontal lever that moves up and down in
response to vertical accelerations of the hips. The accuracies
of pedometer produced step counts vary greatly depending on
the type of technology used, walking speed, and physical
aspects of individuals begin tracked [1]. Pedometers do not
have the ability to differentiate between different types of gait
such as running, shuffling, and side stepping. In [2], Crouter
et al. tested and compared several electronic pedometers in
estimating step counts and distance traveled with subjects
walking on a treadmill. Several models were able to count
steps to within +1% of the actual value during normal
uniform walking. Estimates of distance traveled were less
accurate with most units estimating mean distance to within
+10% at a walking speed of 80 meters per minute. Overshoots
tend to occurs at slower speeds. Undershoots tend to occur at
higher speeds. In [3], Schneider et al. compared pedometer
performance when subjects walked over a closed 400 meter
course. Accuracy of step counts as well as distance estimates
decreased in this more natural environment. Step count
accuracy decreased to + 3%. Since walking speed and stride
length was no longer artificially controlled using a treadmill,
the accuracy of distance estimates showed an greater
decrease.

In [4], Pappas et al. describe a reliable gait phase
detection system based on a single axis angular rate sensor
and three force sensitive resistors. In this system, all motion is
assumed to take place in the sagittal plan. The angular rate
sensor is mounted to the heel with its sensing axis

perpendicular to the sagittal plan and is used to measure the
rotational velocity of the foot. The force sensitive resistors are
taped to the bottom of the same foot. Using a heuristic based
algorithm designed to detect four different gait phases
(stance, heel-off, swing, and heel-strike), the system was able
to detect the phases with 99% reliability. Unlike simple
pedometers, the described method worked well to detect gait
phases during walking over level and unleveled surfaces as
well as walking up and down stairs. In addition, the system
demonstrated robustness in ignoring non-gait events such as
standing up and sitting down, bending, and turning in place.
The system did not have the ability to estimate distance or
direction traveled.

Zijlstra and Hof use a single triaxial accelerometer,
measured leg length, and an algorithm based on an inverted
pendulum model [5] to predict the body center of mass
trajectory during walking. The method determines foot
contacts by monitoring for changes in sign of the forward
acceleration of the lower trunk. Unlike pedometers which use
a fixed step length, mean step length and walking speed are
estimated based on up and down movement of the trunk.
Experimental results in [6] include data from both treadmill
and level ground walking trails. In most cases, the described
method identified foot contacts with nearly 100% accuracy.
In treadmill experiments, maximum observed differences
between predicted speed and treadmill speed were no greater
than 16%. In level ground walking experiments with
presumably less uniform gait, differences between predicted
mean speed and calculated mean speed did not exceed 20%.
This method is able to detect gait event with great accuracy.
However, due to the magnitude of the distance measurement
errors and the inability to estimate direction of the travel, the
navigation performance of this method shows little
improvement over that of a simple pedometer.

Sagawa et al. [7], Sabatini et al. [8], and Cavallo et al. [9]
use a combination of accelerometers and rate sensors attached
to the foot to measure gait parameters and distance traveled.
The Sagawa approach uses a tri-axial accelerometer and a
single axis angular rate sensor attached to the toe (an
atmospheric pressure sensor is used to measure change in
altitude). The Sabatini and Cavallo approach uses a bi-axial
accelerometer and a single axis angular rate sensor attached
to the instep.

Sagawa et al. assumes that foot roll and yaw are zero
during normal walking. Sabatini and Cavallo assume all
motion takes place in a sagittal plane. In both cases, a rate
sensor is mounted perpendicular to the sagittal plane. Gait
events such as heel-off, heel-strike, and swing are detected
using angular rats data. Instead of counting steps, walking
speed and stride length are estimated by double integrating
acceleration data during the swing phase. For best
performance, the tracked subject is required to maintain a
uniform walking speed and gait. Both research efforts were
able to detect gait events with high levels of confidence. In
limited experimental results, Sagawa et al. reports a



maximum distance estimation error of 5.3% over a 30 meter
course. Reported experimental results obtained while
walking over a 400 meter closed course in [9] characterize
errors as being much smaller with an average measured
distance of 401.2 +4.61 meters or just over a 1% error.
Though GPS heading information was used in [9] to
reconstruct the path of travel, neither of the systems described
is able to determine the direction of displacement or position.

A great deal of research has focused on integrating inertial
dead reckoning systems with positional information provided
by GPS and DGPS. In [10], Jarawimut et al. implement a
pedestrian navigation system. During periods of GPS
availability, compass bias and average step length are
updated to make dead reckoning results more closely match
GPS estimates. When GPS information is unavailable,
distance traveled is calculated by multiplying the number of
steps times an average step length. A compass is used to
estimate the direction of travel and the system is able to
provide an estimate of position as long as the tracked subject
is walking in a normal manner.

Other attempts to produce a personal navigation based
on the integration of inertial/magnetic sensors are
documented in [11] and [12]. In [11] Judd suggests that step
length can be estimated based on a linear relationship with
cadence. The described system consists of a GPS receiver, a
three dimensional compass, and tri-axial accelerometer. The
accelerometer is used as a tilt sensor to determine the
horizontal component of the magnetic field and to detect foot
falls. Average step length is estimated by a Kalman filter
algorithm. Distance traveled is based on the product of the
number of steps and the estimated step length. Again this
approach is limited to level walking in open spaces. The
personal navigation module described in [12] contains a
tri-axial magnetometer, a tri-axial accelerometer, a
barometric pressure sensor, and a GPS receiver. Distance
traveled is still based on the step length/step count product. It
is claimed that unlike other similar systems, a pattern
recognition algorithm is used to identify acceleration
signatures related to different types of movement such as
forward and backward walking, lateral walking, and running.
Performance claims for a commercial version of the system
give a 2D positional accuracy of better than 5% of distance
traveled for “forward walking under normal conditions [13].”
No accuracy figures are given for other types of motion.
However, in independent use of the product, the Sendero
Groups reports typical errors on the order of 15% [14].

I1l. METHOD FOR TRACKING POSITION

In theory, the output of an accelerometer can be
integrated twice to obtain displacement information.
However, low-cost accelerometers are susceptible to drift
errors. The position estimates based on double integration
can diverge in a short time period lasting only a few
seconds. Drift correction is thus essential for tracking
position using low-cost accelerometers. In this section, a

drift correction method is first described. An application
of this method to position tracking of a walking person is
then detailed.

A. Correcting Accelerometer Drift

The drift correction method is best illustrated with the
following experiment. An accelerometer is first placed on
a level table top, and then is slid along a straight line for a
distance of one meter. The initial and final velocities are
zero. Figure 1 shows the accelerometer measurement data,
as well as estimated velocity and position for such an
experiment in which an Analog Devices ADXL210E
accelerometer was used. The three plots on the left side
show the results of the original data, and the plots on the
right side show the results of the corrected data. The
correction procedure is discussed below. The velocity is
obtained by integrating accelerometer measurements once,
and the position is obtained by integrating the velocity one
more time. While the sensor actually moved a distance of
one meter, the estimated distance obtained by double
integration is 0.80m as seen in the lower-left plot. A close
examination of the velocity in the middle-left plot indicates
that the final estimated velocity is -0.23m/s at the end of the
motion period, although the sensor stopped moving and the
actual velocity was zero at this point. The error in the
estimated velocity is due to drift in accelerometer
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Figure 1. Results of a one-meter sliding motion

experiment with original accelerometer data and
integrated velocity and position on the left and the
drift-corrected data and resulting velocity and
position on the right side.

measurements. Because the final velocity is known to be
zero in this case, a drift correction can be applied to the
accelerometer measurements so that the final estimated
velocity is zero. The three plots on the right side of Figure
1 are the corrected acceleration, velocity, and distance. It
is seen that the final velocity is now zero. As a result of this
drift correction, the estimated distance moved is 1.01m.
Clearly, this drift correction method makes it possible to



obtain accurate position information through double
integration. Many more experiments were conducted, and
similar results were obtained. Figure 2 shows the results
of an experiment where the sensor was moved a distance of
three meters. With the uncorrected data, the final estimated
distance is 2.01m, yielding an estimation error of 33%.
After applying the drift correction, the final estimated
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Figure 2. Original and drift-corrected data for a

three-meter sliding motion experiment.

distance is 2.99m with an estimation error of only 0.3%.

B. Position Tracking of a Person

Human gait motion is cyclic in nature. During walking,
each gait cycle consists of two phases: a stance phase and a
swing phase. The stance phase is the portion of the cycle
during which a foot is in contact with the ground. The swing
phase is the portion of the cycle during which the same foot
is not in contact with the ground. The stance phase takes
approximately 60% of the gait cycle, and the swing phase
takes the remaining 40%. During walking (rather than
running or jumping), there are two periods of time in a
single gait cycle when two feet are both in contact with the
ground. This period of double support occupies about 20%
of the gait cycle [15]. Based on the results of experiments
presented in the previous subsection, it is possible to obtain
accurate position information by double integrating
accelerometer measurements as long as drift in
accelerometer measurements can be corrected. During the
stance phase, the foot is in contact with the ground, and foot
velocity is zero. If an inertial/magnetic sensor module is
attached to a foot, drift in accelerometer measurements can
be corrected each time the foot is in the stance phase of the
gait cycle [7]. If the estimated foot velocity is not zero, a
drift correction can be applied to the accelerometer
measurements as discussed in the previous subsection.
Using this approach, Sagawa, etc. [7] and Gavallo, etc. [9]
reported early efforts on estimating walking distance.

In this work, an inertial/magnetic sensor module is
attached to the foot, and the 3-dimensional position (not just

walking distance) of a person is estimated and tracked. The
inertial/magnetic sensor modules considered for this study
contains triads of orthogonally mounted accelerometers,
angular rate sensors, and magnetometers. Examples of such
inertial/magnetic sensor modules include the MARG sensor
[16], the 3DM-GX1 orientation sensor from MicroStrain
[17], the nIMU from MEMSense [18], the MTx orientation
tracker from Xsens [19], and the InertiaCube3 from
InterSense [20]. These inertial/magnetic sensor modules
are primarily designed for tracking 3-dimensional
orientation. Algorithms used by these sensor modules for
processing accelerometer, angular rate, and magnetometer
measurements to produce orientation output typically use a
Kalman filter [21]. In addition to providing orientation
output in Euler angles and/or quaternions, some sensor
modules including the MARG, 3DM-GX1 and nIMU also
optionally provide scaled measurements of acceleration,
angular rate, and magnetic field. 3DM-GX1 and nIMU are
used in this study.

Acceleration  measurements provided by the
inertial/magnetic sensor module are in sensor or body
coordinates. These measurements are first transformed into
the earth coordinates. The transformation is accomplished
by using the quaternion output of the sensor module. The
three components of the acceleration measurements in the
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Figure 3. Three components of the velocity obtained by

integrating the original acceleration measurement.

earth coordinates are then integrated to obtain velocity
estimates. Figure 3 depicts the three components of the
integrated velocity for an eight-meter walk. During the
stance phase, each of the velocity components should be
zero. However, it is seen that the estimated velocity tends to
drift over the time. Applying the drift correction method
discussed earlier each time the gait cycle enters the stance
phase results in the corrected velocity profile shown in
Figure 4. The corrected velocity is integrated once more to
obtain 3-dimensional position information. The accuracy
of the position information will be discussed in the next
section which examines detection of gait events during
various mobility modes including straight line walking,
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Figure 4. Velocity profile obtained from drift-corrected
acceleration.
circular walking, running, backward
walking, and climbing stairs.

side stepping,

C. Detecting Gait Events

In order to apply the drift correction method for
walking as discussed above, it is necessary to reliably
detect gait events, particularly the stance phase, using only
measurement data. Both accelerometer and angular rate
data can be used for this purpose.

Figure 5 shows the three components of linear
acceleration in the earth coordinates during walking.
While all three acceleration components exhibit a cyclical
pattern, it can be observed that z-axis acceleration data
provide the strongest indication of gait events. During the
stance phase, acceleration is near zero. Since there are a
number of zero-crossings during the swing phase, a zero
threshold and a time heuristic must be applied to the
acceleration data to detect stance phases. The time heuristic
is required to avoid classifying any zero crossing in the
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Figure 5. Three components of the foot acceleration in
the earth coordinate system.
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Figure 6. Foot angular rate in the ankle axis.

swing phase as a stance phase. If the acceleration is within
the threshold for a specified period of time, the foot is
determined to be in the stance phase.

Angular rate measurements also provide an indication
of gait events. The angular rate in the sensor coordinates
measuring ankle axis rotation is more prominent in
differentiating the stance phase from the swing phase.
Figure 6 shows the x-axis (or ankle axis) angular rate for a
typical walk. The angular rate is near zero during the
stance phase. A heuristic similar to the method discussed
above can be applied to the angular rate data to detect the
stance phase. In empirical studies involving several
different people, the use of angular rate data was found to
be more reliable than angular rate data.

IVV. EXPERIMENTAL RESULTS

The following sub-sections describe preliminary
experimental results demonstrating the accuracy of position
estimation using inertial/magnetic sensor modules. These
experiments include trials in which the tracked subject
walked a specified distance in a straight line, walked around a
closed circuit that was roughly circular in shape, ran a
specified distance in a straight line, and finally followed a
square pattern using three different types of motion.
Preliminary results are also shown for walking up stairs. Data
for each type of experiment was collected using several
different individuals. These brief results are designed to
demonstrate the robustness of position tracking using
inertial/magnetic sensor modules and make apparent the wide
applicability of this method to numerous applications. At the
time of this writing, further experiments are under way as the
position tracking method is further refined.

All experiments were conducted using a single sensor
module attached to the foot as depicted in Figure 7. Distances
walked were measured using a standard measuring tape. Data
was collected in real-time and post-processed using a
program written in Matlab. Sampling rate was approximately
70 Hz.

A. Straight Line Walking

Straight line walking experiments were conducted to
validate the feasibility of estimating walking distance on a
level surface. These experiments measure only displacement
along a straight line. No attempt was made to estimate
position. Table 1 shows experimental results for 24-meter
straight line walk conducted in an indoor laboratory



Figure 7. MemSense nlmu mounted on foot for

position tracking during walking, side stepping,

and running.
environment. Three different experimental subjects with
varying stride lengths were used. The average distance
estimation error for the indoor walking experiments is 5.5%
with a standard deviation of 2.4%. Table 2 shows results for
longer 120-meter straight line walks conducted in an outdoor
environment. Two different subjects were used in these
experiments. The distance estimation error for this small
number of experiments was less than that observed during the
indoor experiments with an average error of 1.3% and a
standard deviation of 1.3%. Maximum error for the
120-meter walking experiments was 3.3%.

Table 1. Experimental results of 24-meter straight line walk.

along with accelerometer and angular rate measurements are
used to compute an orientation quaternion, which is in turn
used to transform data. In the presence of magnetic
interference, orientation estimation algorithms designed for
inertial/magnetic sensor modules exhibit errors in azimuth
angle estimates [22]. In an indoor environment there is
considerably more magnetic interference due to the presence
of file cabinets, computers, monitors, and other laboratory
equipment. This interference can causes estimated path of
travel to appear to curve or wobble to the right and left when
the true path of travel is a straight line. A correction method
for these errors is currently under investigation.

Table 2. Experimental results of 120-meter straight line walk
in an outdoor environment.

Walker |Experiment#| Step [Distance (m)] % Error
Count
A 1 83 116.03 3.3%
A 2 82 119.42 0.5%
B 1 80 119.12 0.7%
B 2 79 119.05 0.8%

B. Straight Line Running

The described position estimation method is applicable to
any context involving repeated short periods during which
angular rate and velocity are zero. During running, as with
walking, there are brief periods of time in the gait cycle
during which the foot is in contact with the ground. Although
these zero velocity periods are relatively short, the same
method can be used to correct drift in accelerometer
measurements. Relative to walking, it is more difficult to
detect the stance phase from running data due to the short

E . t Estl(rjnate duration of these periods.
Xperimen Step Count . Error Straight line running experiments were conducted over the
# Distance . .
(m) same 120-meter course used in the outdoor walking
experiments. Again these experiments tested only the ability
1 16 23.59 1.7% to measure displacement along a straight line. Table 3 shows
5 16 21.95 8.5% the results of twq running experiments over a 120-meter .Ior?g
course. The maximum error for these experiments was within
3 17 2270 5.4% 4.75% of the actual distance covered.
4 17 25 61 6.7% Tablg 3. Experimental results of 120-meter straight line
running
5 17 25.67 7.0% Test| Step Actual Estimated Error
6 17 23.07 3.9% # | Count | Distance (m)| Distance (m)
. . . 1 57 120.0 1154 3.80%
The marked difference in estimation accuracy between
indoor and outdoor environments is attributed to errors in 2 54 120.0 114.3 4.75%
transforming measurement data from senor coordinates to an

Earth fixed coordinate system. Magnetometer measurements



C. Circular Walking

Circular or curved walking experiments were the first to be
conducted in order to validate the feasibility of tracking 2-D
position. During these experiments the position of foot was
simultaneously monitored by an optical tracking system.
Figure 8 shows the position as estimated using
inertial/magnetic sensor module data. Both axes are plotted in
meters. The starting and ending point for the foot was the
same point. This point is (0, 0) in the plot. Although truth
reference data is not available as of the time of this writing,
the accuracy of 2-D position tracking can be seen by
observing that the estimated trajectory returns to the starting
point following the period during which the walk occurred
with high accuracy.

¥ position ()

0ar

K | | | | | |
A6 14 12 -1 08 06 04 02 0 0z 04
H position (m)

Figure 8. Position tracking of circular walking
trajectory.

D. Combined Forward Walking, Side Stepping, and
Backward Walking

To demonstrate that the position tracking method can be
applied to mixed types of human movement, a 5.5 meter
square pattern was measured and marked in an outdoor
environment. The test subject followed this marked course
by walking forward on the first leg of the square, side
stepping to the right on the second leg of the square, walking
backward on the third leg of the square, and side stepping to
the left on the last leg of the square before the foot was
returned to the starting point. Figure 9 shows the position
tracking results for this mixed motion experiment. The x-axis
is the north direction, and the y-axis is in the east direction.
The starting and ending point is again (0, 0). It can be
observed that the end point and starting point almost coincide,
with a separating distance of 0.08 meters. The estimated total
walking distance is 21.6 meters, while the actual total
distance is 22.0 meters giving a distance estimation error of
1.8%.

E. Climbing Stairs

The inertial/magnetic  sensor module  provides

3-dimensional acceleration measurements in x-, y-, and
z-axes. Thus, it is possible to track 3-dimensional position.
The experiments described so far were primarily concerned
with correcting and integrating x- and y-axis acceleration.
Vertical axis acceleration can be corrected and integrated in
the same manner in order to estimate relative height. Figure
10 depicts the 3-D estimated trajectory of a person who
climbed stairs shown in Figure 11. In can be qualitatively
observed that the estimated trajectory in Figure 10 closely
resembles the actual profile of stairs.
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Figure 9. Position tracking results of combined
forward walking, side stepping, and backward
walking.
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Figure 10. Estimated 3-D position of a person
climbing stairs shown in the next figure.

V. WORK IN PROGRESS

At the time of this writing further experiments are being
conducted to evaluate, improve, and document the accuracy
of position estimation using inertial/magnetic sensor
modules. These experiments include mixed motion types and
additional tracking methods for the purpose of providing
truth data.



The experimental results provided in this paper were
obtained by post-processing the sensor data. Efforts are
currently underway to implement a real-time system. This
system will be integrated into an immersive virtual
simulation.

As seen in the indoor walking experiments, orientation
estimation errors caused by a non-uniform magnetic
environment can cause errors in transforming data from
sensor coordinates to Earth coordinates. A correction method
has been devised and is currently being tested.

Figure 11. Photo of the stairs used in the experiment
for estimating 3-D position.

VI. CONCLUSION

Self-contained position tracking using data from
inertial/magnetic modules has applicability to a wide number
of applications. Preliminary experimental results presented in
this paper document that this technique can be used to track
three dimensional position during a variety of motion types.
Estimated errors from these experiments indicate that the
method is accurate. Work is currently underway to further
refine the method.
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Implementation and Experimental Results of a
Quaternion-Based Kalman Filter for Human Body
Motion Tracking
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Abstract - A human body motion tracking system based on
use of the MARG (Magnetic, Angular Rate, and Gravity)
sensors has been under development at the Naval Postgraduate
School and Miami University. The design of a quaternion-
based Kalman filter for processing the MARG sensor data was
described in [1]. This paper presents the real-time
implementation and testing results of the quaternion-based
Kalman filter. Experimental results validate the Kalman filter
design, and show the feasibility of the MARG sensors for real-
time human body motion tracking.

Index Terms — Quaternion-based Kalman filter, human
body motion tracking, MARG sensors, inertial/magnetic sensors.

1. INTRODUCTION

Inertial/magnetic sensor modules can be used to
estimate orientation of a rigid body relative to an Earth fixed
reference frame without the need of an artificially generated
reference. The estimates produced are based entirely on
inertial quantities related to the motion and attitude of the
module and the orientation of the ambient magnetic field
relative to the module. If a single sensor module is placed
on each of the segments of an articulated rigid body, the
“posture” of the structure can be determined. Such
“sourceless” orientation tracking has significant advantages
over other methods owing to its low susceptibility to various
sources of noise and lack of range limitations [8,9]. If the
human body is modeled as articulated rigid bodies
consisting of approximately fifteen segments, posture and
gait could be accurately tracked and measured over an
unlimited area. Thus, this methodology of body tracking
could have important applications in virtual environments,
robotic teleoperation, personal navigation, and human
monitoring applications [10].

The Naval Postgraduate School and Miami University
have teamed up to develop an inertial/magnetic sensor
module called the MARG sensor for tracking human body
motions in real time [2]. MARG (Magnetic, Angular Rate,
and Gravity) sensor modules contain three magnetometers,
three angular rate sensors, and three accelerometers. Each
sensor type is orthogonally mounted in a triad. This paper
presents the implementation and experimental testing results
for a quaternion-based Kalman filter designed for the
MARG sensors.

An ecarlier version of the Kalman filter implemented
here was described in [1]. The overall filter design remains
unchanged. However, some portions of the filter design

have been modified. In particular, the original design used a
reduced-order Gauss-Newton method to compute an
orientation  quaternion  from  accelerometer  and
magnetometer measurements. This part of the filter was
first modified to use the QUEST Algorithm [3] and later the
Factored Quaternion Algorithm [4,5]. The QUEST
algorithm [3,6] was created to determine the attitude of a
rigid body in reference to a fixed coordinate system, using a
set of measurement vectors. The algorithm computes a
rotation (attitude) quaternion that rotates the measurement
vectors to match the reference vectors. More recently, the
Factored Quaternion Algorithm [4] was derived. It has the
same goal as the QUEST algorithm but orientation estimate
are derived through the measurement of sequential rotations
about three orthogonal axes. It has been shown that the
Factored Quaternion Algorithm has equal or better
performance than the QUEST algorithm in estimating
orientation quaternions with MARG sensor measurements
[5]. Nevertheless, the Factored Quaternion Algorithm is
computationally more efficient by about 25%, and is thus
used as part of the filter design in the latest implementation
[5].

This paper is organized as follows. Section II presents
the process model of the Kalman filter for human body
motion tracking. Section III describes implementation
issues of the Kalman filter with a focus on how the
nonlinear process model was first linearized and then
discretized. Experimental modeling of the process noise
covariance matrix and the measurement noise covariance
matrix is also detailed. Section IV reports the MATLAB
simulation and offline testing results of the Kalman filter.
Section V describes the implementation and testing results,
followed by conclusions in section VI.

II. KALMAN FILTER PROCESS MODEL

The process model of the quaternion-based Kalman
filter presented in [1] will be briefly reviewed in this
section. A diagram of the process model is shown in Figure
1. In this model, the angular rates @ in body coordinates
are assumed to be generated by a first-order linear system
with a white noise forcing function w. The time constant of
the first-order linear system ist. The orientation estimate

produced by the filter is ¢ . The angular rates ® and the
quaternion derivative ¢ are related by [7]:

Proceedings of 2005 IEEE International Conference on Robotics and Automation. April 18-22. 2005. Barcelona. Spain.
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Figure 1. Kalman Filter Process Model.
] the measurement equation for the Kalman filter is linear and
§=—qQw () is given by:
2 z=Hx+v ( t) (7)

where ¢ is the orientation quaternion in Earth coordinates,
and & represents quaternion multiplication. In order to
take advantage of computational simplifications and
efficiencies possible of unit quaternions, the quaternion is
normalized to unit length in the last step of the process
model. It is noted that quaternions are used to represent
orientation in the filter design because quaternions do not
have the singularity problem associated with Euler angles
and eliminate the computational expenses related to
approximation of transcendental functions.

The state vector is defined as a 7-dimensional vector
with the first three components being the angular rates and
the last four being the elements of the quaternion. The
process model expressed in terms of state equations is
characterized as follows:

. 1 1 .
xi=——xi+—wi(t) i=1,23 )
T, T,

for the angular rates, and
. 1
X, = -5[x,x5 +X,X, +x3x7], 3)
.1
X5 = 3[x1x4 -X,x, + x3x6], “)
. 1
X, = E[x1x7 +x,x, - x3x5], 4)
. 1
X, = 3[—x1x6 +x,x, + x3x4] (6)

for the quaternion components.

The MARG sensor provides a 9-dimensional
measurement vector, consisting of three elements of the
linear acceleration vector, three elements of the local
magnetic field, and three elements of the angular rate
vector. If this nine-dimensional measurement vector is
provided directly to the Kalman filter as measurements, the
measurement equations are nonlinear and the resulting
Kalman filter becomes complex and computationally
expensive. An alternative approach to the Kalman filter
design was suggested in [1]. This approach uses the
Newton method or a reduced-order Gauss-Newton method
to find a quaternion corresponding to each set of accelerator
and magnetometer measurements. These computed
quaternion and angular rate measurements are then
presented to the Kalman filter as measurements. As a result,

where z is the seven-dimensional measurement vector, H is
a 7 x7 identity matrix, and v is the vector of measurement
noises.

Although the reduced-order Gauss-Newton method
presented in [1] was considerably more efficient than the
full-order Gauss-Newton method, it still is an iterative
method that needs to be executed several times before
convergence occurs. Following additional work, the
reduced-order Gauss-Newton method was replaced by the
QUEST Algorithm [3,6], and more recently by the Factored
Quaternion Algorithm [4]. Both the QUEST Algorithm and
Factored Quaternion Algorithm take a set of the
accelerometer and magnetometer measurements and
produce an orientation quaternion. They are appropriate for
orientation estimation in static or slow moving applications
where linear acceleration does not comprise a significant
part of the total acceleration measurements. The Factored
Quaternion Algorithm is computationally about 25% more
efficient than the QUEST Algorithm.

III. KALMAN FILTER IMPLEMENTATION

In this section, the implementation of the Kalman filter
based on the process model presented in the previous
section will be described. It is noted that although Equation
(2) is linear, Equations (3) to (6) are nonlinear. As a result,
an extended Kalman filter must be used. Additionally, these
continuous equations must be discretized for digital
implementations.

A. Discrete Extended Kalman Filter

Equations (2) to (6) can be written in vector form as
follows:

)'c=f(x)+w(t). (8)

This nonlinear state equation is linearized along the
currently estimated trajectory x :

. 0

m-Z

Ax+w(t), ©)
ox|,_;

where the actual trajectory, x, is the sum of estimated
trajectory x and the small increment Ax

x=%+Ax. (10)

Equation (9) is linear, but it is still in the continuous time
domain. The next step is to discretize it to obtain a discrete
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Figure 2. Diagram of the extended Kalman filter.

time process model. Let At be the sampling interval. Then
the difference equation corresponding to the differential
equation (9) is given by:

Ax(zk+]):®kA'x(tk)+w(tk) (1D
where the discrete state transition matrix is:
At
e 0 0 0 0 0 0
At
0 e 0 0 0 0 0
Ar
0 0 e 0 0 0 0
XA XA XA I YA XA XA
P=1" 2 2 2 2 2 2
AL XA XA XA J LA XA
2 2 2 2 2 2
LA XA XA KA XA ] XAt
2 2 2 2 2 2
L 2 2 2 2 2 2
and the elements of discrete white noises are given by:
] _M
e " wly)dy i=123
wi)={1e " o) (12

0 1=4,567
Equation (7) is linear. Thus, linearization is not needed.
The corresponding discrete process model equation is
simply given as:
(13)
A standard discrete Kalman filter may now be designed
for the discrete process equation (11) and the discrete

z, =H,x, +v,

measurement equation (13). A complete diagram of the
extended Kalman filter is depicted in Figure 2.
B.  Modeling of Process and Measurement Noises

In order to implement the Kalman filter described
above, it is necessary to determine values of the process

noise covariance matrix Q and the measurement noise
covariance matrix R_ . These matrices represent the

confidence in the system model and the measurement data,
respectively.
The process noise matrix Q, is given by:

0, = E[ w(t)w(1)' |

where E is the expectation operator, and W(Z, ) is the

(14)

discrete white noise of Equation (12).

It is noted that w (y) in Equation (12) is the
continuous, independent white noise process of Equations
(2) to (6), with zero mean and variance D, . Therefore,

E[w,(t)w,(z)]= {Dﬁ(ot ) i

e

(15)

This implies that the process noise matrix is a diagonal
matrix with non-zero elements only in the first three
positions of the main diagonal, and can be computed using
Equations (14) to (15) as

(g, 0 0 0 0 0 0
0 q, 0 0 0 0
0 0 g5 0 0 00
=10 0 0 00 0 0 (16)
o 0 0 0 0 0 0
o 0 0 0 0 0 0
0 0 0 00 0 0]
where ¢q,,,q,,, and ¢33 are given by:
D 246
q”=E[w1(tk)w,(tk)]=? I-e" |, (17)
1
D A
q22=E[w2(tk)w2(tk)]=$ I-e " |, (18)
and
D 2
q33:E[W3(tk)W3(tk)]:j I-e” (18)
3

Up to this point, the variance of the white noise
processes D and the time constants of the process model
1, have been assumed known. To implement the Kalman

filter, these parameters must be determined.
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Figure 3. Simulated angular rate (left) and actual angular rate

measurements (right).

Using measurement data available from the MARG
sensors, the variances and time constants can be found using
a simulated process model for the angular rates, where the
variance and time constants are adjusted until the output of
the simulated model closely matched the real data collected
from the MARG sensors. For this purpose, a sensor was
attached to the arm of a person and typical arm motion data
was collected.

The resultant variances and time constants are shown in

Table 1, where ®,, ®, and ®, are respectively the angular

rates about the x, y, and z body coordinate axes.

Table 1. White noise variance and the time constant
of the linear system.

Angular Variance D, Time constant
rate (rad 5 /S B ) T7; (s)
o, 50 0.5
o, 50 0.5
o, 50 0.5

Figure 3 shows a comparison between the simulated
angular rates and the actual angular rates obtained from a
MARG I1I sensor for typical arm motions. The graphs to the
left represent the angular rates generated by the simulation
model. The graphs to the right are the angular rates
measured by a MARG sensor. It can be observed that the
two sets of data exhibit similar characteristics.

The measurement noise covariance matrix R,

represents the level of confidence placed in the accuracy
of the measurements, and is given by:

R=E[v(e)v(t) ]

Assuming that measurements are uncorrelated, Equation

(19)

(19) leads to the following expression for the
measurement noise covariance matrix:
(v, 0 0 0 0 0 0]
0 r, 0 0 0 0 0
0 0 r, 0 0 0 0
R=[0 0 0 r, 0 0 0| o
0 0 0 0 r, 0 0
0 0 0 0 0 r, 0
0 0 0 0 0 0 &r,

The diagonal elements are the variances of the
individual measurements, which can be determined
experimentally using measurement data from the MARG
sensors. For this purpose, the measurements from a static
MARG sensor were collected. Table 2 summarizes the
values derived from experimental measurements.

Table 2. Elements of the measurement noise covariance
matrix.

Hy | o | I3 m Tss Ts6 T3y
0.01 [ 0.01 | 0.01 | 0.0001 | 0.0001 | 0.0001 | 0.0001

Table 3. Convergence of the quaternion estimate.

Sample | g, g, 7 7
1 0.99985 | 0.0082135 | 0.0066032 | 0.01357
2 0.99991 | 0.0057585 | 0.0049037 | 0.011901
3 0.9999 |0.0055983 | 0.0048826 | 0.011882
4 0.9999 | 0.005288 |0.0046884 | 0.011784
5 0.9999 |10.0052297|0.0046353 | 0.011506

IV. MATLAB IMPLEMENTATION AND TESTNG

After deriving all the required parameters to initialize
the Kalman filter, it was implemented using MATLAB to
test the performance and accuracy of the quaternion
orientation estimates produced by the extended Kalman
filter. Real world data recorded using a MARG sensor was
used in these tests.

Since the Kalman gain was determined such that the
sum of squared errors is minimized, one way to measure the
performance of the Kalman filter is through examination of
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Figure 4. Trace of the error covariance matrix.

the trace of the error covariance matrix P,. Figure 4 shows

the trace of P for the first 200 samples of data obtained

with the sensor in its reference position (x axis pointing
north, y axis pointing East, and z axis point down). It is
noted, that the sum of squared errors reaches a steady state
after approximately 60 iterations.

Table 3 shows the elements of the quaternion for the
first five samples. The initial estimate was chosen to be the
unit quaternion (0.5, 0.5, 0.5, 0.5). The actual position of the
sensor in the reference position is represented by the
quaternion (1, 0, 0, 0). The data shown in Table 3 indicates
that the Kalman filter estimate converged to the actual
position in a single iteration.

While both the QUEST Algorithm and the Factored
Quaternion Algorithm worked well for static orientation and
slow movements, the objective of the Kalman filter is to
blend angular rate measurements with the estimates
produced using magnetometer and accelerometer data
during periods in which the sensor module is subjected to
motions involving high angular rates and large linear
accelerations. To verify the estimation accuracy during such
periods, the orientation estimates of the Kalman filter were
compared to the estimates produced using only the Factored
Quaternion Algorithm with no rate measurement. Two kinds
of experiments were conducted for this test. The first used
controlled rotations produced by a HAAS precision tilt
table. The second used a random motion pattern produced
while the sensor was attached to the arm of a person.

In the first set of experiments, the sensor was initially
placed at the end of a 1-meter pole attached to the rotating
table with its xyz axes aligned with West-North-Down
directions. The sensor was rotated 90° about the y-axis at a
rate of 60°s and then rotated —90° at the same rate (in the
reverse direction). Figure 5 shows the performance of the
Kalman filter in estimating the orientation of the sensor. The
graphs to the left show the orientation estimated by the
Factored Quaternion Algorithm, and the graphs to the right
show the orientation estimated by the Kalman filter. It can
be seen that the Factored Quaternion Algorithm was able to
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Figure 5. Quaternion estimates produced by the Factored
Quaternion Algorithm (left) and Kalman filter (right) with
a 90-degree rotation in pitch axis.

correctly estimate the pitch angle before the first (positive)
rotation, between the first and second rotations, and after the
second (negative) rotation, but it is not able to correctly
estimate orientation during the rotational motions. Large
errors in roll and yaw were also produced by the Factored
Quaternion Algorithm. On the other hand, it can be seen
from the right-center plot that the Kalman filter was able to
correctly estimate the pitch angle throughout the duration of
the experiment. The small roll and yaw motions seen in the
top-right and bottom-right plots are due to misalignment of
the individual sensor components within the MARG sensor
module.

Figure 6 shows the results of an experiment in which
the sensor was rotated randomly while attached to the arm
of a person. Although there is no true reference in this case,
it can be seen that the Kalman filter eliminated the jittering
and spiking contained in the orientation estimates produced
by using the Factored Quaternion Algorithm alone.

V. REAL-TIME TESTING RESULTS

After initial testing of the extended Kalman filter with
the MATLAB implementation, the Factored Quaternion
Algorithm and extended Kalman filter algorithm were
implemented in Java for real-time testing and evaluation.
The real-time quaternion produced by the Kalman filter was
visualized by a human-like avatar called “Andy” as seen in
Figure 7. Two MARG sensors were used to track the
motion of a human arm, one sensor being attached to the
upper arm and the other attached to the lower arm.

The Factored Quaternion Algorithm was able to track
the motion of the human arm under slow moving conditions
where linear acceleration was not significant. However,
when the arm motion became faster, the algorithm was not
able to follow the arm motion resulting in observable lag as
well as overshoots.
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Figure 6. Quaternion estimates produced by the Factored
Quaternion Algorithm (left) and Kalman filter (right) with
random arm movements.

When the extended Kalman filter was integrated with
the Factored Quaternion Algorithm, the avatar was able to
successfully track the human arm motion in real time under
all conditions. Furthermore, the filtering process did not
produce any noticeable lag. Movement of the human arm
and the avatar was synchronized.

V. CONCLUSIONS

The paper presents implementation and experimental
results for a quaternion-based Kalman filter designed for
real-time human body motion tracking using the MARG
sensors. A simple process model designed for human body
motion tracking was first introduced. The model was then
linearized and discretized. Experimental determination of
error covariance matrices was described. An extended
Kalman filter was implemented, first in MATLAB for
offline evaluation and finally in Java for real-time testing
and evaluation. The estimated orientation quaternion was
visualized using a human avatar. Testing results indicated
that the Kalman filter performed satisfactorily for tracking
motions of a human arm in real time under all conditions.
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Abstract—Real-time tracking of human body motion has
applications in tele-operation, synthetic reality and others.
A metion tracking system based on use of the MARG
sensors has been under development at Naval Postgraduate
School and Miami University. The Magnetic, Angular Rate,
and Gravity (MARG) sensor modules use a combination of
three orthogonal magnetometets, three orthogonal angular
rate sensors, and tbree orthogomal accelerometers te
measure 3-D orientation of individual Emb segments in
order to determine posture. This paper presents the Jatest
results of the MARG human body motion fracking system.
The design and implementation of a Control Interface Unit
(CIU), a real-time 3-D human avatar called “Andy,” and a
concurrent  client-server  program  are  discussed.
Experimental testing and evalnation of the overall MARG
system is also presented. The system is able to track
multiple human limbs in real time. The captured human
motion data can be visnalized over the Internet by multiple
clients using the 3-D avatar.

Keywords - Human body motipn tracking; MARG sensors;
avatar; wireless communication.

[. INTRODUCTION

Accurate real-time tracking of human body motion is
important for many applications that invelve human-
machine interactions. One such application is in virtual
training [1]. Real-titne motion tracking makes it possible
to create immersive virtual environments in which
trainees will act and react as if the environments were
real. Captured human motion data can also be used to
control humanoid robots [1] [3]. Measurements of human
bedy movements can be used to estimate physical and
mental conditions of patients in clinical applications [4].
Motion tracking of human movements is widely used in
sports training and production of animated movies.

There are a number of technologies for tracking
human body motion, including mechanical trackers,
active magnetic trackers, optical tracking systems,
acoustic tracking systems, and inertial tracking systems
[51(6][7).  Among the inertial tracking systems,
Sakaguchi et al. [8] describes a gyroscope and
accelerometer-based motion tracking system for tracking
human arm motion, Lee and Ha [9] reports a study of
human motion tracking using only accelerometers. There
are broadly two kinds of image-based motion tracking
methods. One method requires markers on the tracked
human body, and other method does not use markers.

0-7803-8463-6/04/$20.00 ©2004 IEEE
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OPTOTRAK from Northern Digital Inc. is a typical
example of a marker-based system [16]. Another is the
motion tracking method developed for the CAVE system
(111 Marker-free methods are in general preferred
because they are less cumbersome [12][13]. In most
cases, multiple cameras are used to overcome occlusion
problems apd to construct 3-D motion data from 2-D
images [14][15].

This paper presents a MARG sensor-based motion
tracking system. The Magnetic, Angular Rate, and
Gravity (MARG) sensor modules use a combination of
magnetometers, anguiar rate sensors, and accelerometers
to measure 3-D angular motion of rigid bodies. MARG
sensors are self-contained, and do not require any
artificially generated sources. They are constructed using
MEMS sensors.  As a result, they are small and are
power-efficient. MARG sensor module design and
implementation details were presented in [16]. A
quaternion-based Kalman filter used to process MARG
data was discussed in [17].

This paper presents other components of the MARG
human motion tracking system, and experimental testing
results of the overall system. These presented
components inciude the Control Interface Unit (CIU), the
3-D human avatar, “Andy,” and a client-server protocol
for transmitting MARG animation data, The CIU is
designed to provide contol signals to and multiplex
measurement data from multiple MARG sensor modules,
It packages measurement data from up to 16 MARG
sensors for wireless transmission using the 802.11b
wireless LAN standard. “Andy,” the human avatar is a
cartoon-type avatar developed using X3D [18] and
follows the H-Anim specification [19]. It is specialized
to allow animation using orientation data expressed
relative to an Earth fixed reference frame such as that
provided by MARG sensor modules. The MARG human
motion tracking system allows multiple clients to
visualize the captured human motion over the Internet
using the avatar Andy, supported by the client-server
program.

. MARG SENSORS

MARG sensor modules are designed to provide data
for measuring 3-DOF orientation in real time without
singularities [17]. A more detailed description of the



design and implementation of the third generation
prototype can be found in [16]. The dimensions of the
MARG I are 28 x 30.5 x 17.3 mm. It weighs
approximately 8.5 grams (0.3 0z). Power consumption is
144 mW (20 mA) when powered with 7.2 Volts.
Sampling rate is 100 Hz. The MARG 111 is fabricated by
McKinney Technology [20].

The MARG I contains three major sensing
components. A pair of the two-axis (HMC1052) and one-
axis (HMC1051Z) magretic sensors are used for low
frequency, three dimensional measurement of the
direction of the local magnetic field vector. A pair of
two-axis Analog Devices ADXI202E acceleration
sensors is used for low frequency, three dimensional
measurement of the gravity vector relative to the
coordinate frame of the sensor module. A triad of
orthogonally mounted NEC/TOKIN CG-L43 ceramic
angular rate sensors are used for high frequency
measurement of sensor module body rates. Two of the
three sensing components of the MARG IH (the
magnetometers and the rate sensors) produce analog data.
The Texas Instruments MSP-430F149 microcontroller is
a fourth major compoenent in the sensor module. It
performs the analog-to-digital conversion of data and
transmits digital data to the CIU. After collection and
retransmission by the CIU, MARG sensor data is
processed by a filter that takes advantage of the
complementary characteristics of ‘the installed sensor
components [17].

M. CONTROL INTERFACE UNIT (CIU)

A.  Role of the Control Interface Unit

When completed, the MARG human motion tracking
system will deploy 15 MARG sensors to track motion of
15 limb segments. There is a need to multiplex
measurement data from all 15 MARG sensors and
transmit them to a network-based computer for
processing. For this and other purposes, the concept of
the Control Interface Unit (CIU) was introduced, Itisa
component of the motion tracking system that is designed
to be worn by the user at the waist or on the back. All 15
MARG sensors are connected to the CIU by a custom-
made cable. Through this cable, the CIU delivers the
power and the clock signal to each of the MARG sensars.
The MARG sensors transmit measurement data.to the
CIU. The CIU then multiplexes the measurement data
from multiple MARG sensers, and wirelessly transmits
the data to a networked PC (server) for processing. The
wireless transmission is achieved using the TEEE 862.11b
standard.

The MARG sensor communicates with the CIU
through a Universal Synchronous Asynchronous
Receiver Transmitter (USART) operating in the
Synchronous Peripheral Interface (SPI) mode. In this
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Figure 1. The One-Channel Contro! Interface Unit
{One-Channel-CIU)}.

configuration, the MARG sensor operates as a slave
device whereas the CIU is the master device. The clock
signal needed for synchronizing the data transmission is
delivered to the MARG sensor by the CIU.,

B.  The One-channel CIU

The CIU was designed and implemented in stages.
A one-channel CIU was designed and implemented first.
It connects to one MARG sensor, and delivers the output
data by a standard RS232 port. An 802.11b wireless
serial adaptor named WiSER2400.IP from OTC Wireless
Inc. [21] was ufilized for wireless transmission of the
output data to the networked PC. A picture of the one-
channel CIU is shown in Figure 1. The main component
of the onechannel CIU is a TI MSP430F149
microcontroller identical to the one onboard the MARG
11T sensor.

Figure 2. The Three-channel Control Interface Unit
(Three-channel CIU).

C. The Three-channel CIU

After the one-chanmel CIU was designed,
implemented, and successfully tested, a three-channel
CIU was built. The purpose of the three-channel CIU
was to test motion tracking of multiple limb segments
with multiple MARG sensors, and to test the operation of



the human avatar Andy and the client-server program
(discussed later), The three<hannel CIU is shown in
Figure 2. It is constructed from three one-channel CIUs
in a paralle! configuration.

D. The Sixteen-channel CIU

The MARG motion tracking system is designed to
simultaneously track 15 limb segments. For this purpose,
a sixteen-channel CIU was designed. Sixteen rather than
fifteen was chosen because input/output nuenber of
multiplexers usually is in power of two. This CIU is to
multiplex all measurement data from 16 MARG senscrs,
packages them in a proper format, and transmit them
using a single wireless communication channel. The
selected multiplex method was to use a XILINX®
Spartan™-I1 XC25100 Field Programmable Gate Array
(FPGA) [22]. The prototype board of the sixteen-channel
CIU is shown in Figure 3.

i .§ f m e i e

Figure 3. Top View of the Sixteen-channel Control
Interface Unit (Sixteen-channel CTU).

TABLE 1. THE SIXTEEN-CHANNEL CIU OQUTPUT FORMAT
Number of Bytes

Lanteny
Communication Synchronization
MARG I “Alive” Identification Bits
Payload “Health" Status |
Timing
Sample Numbaer

Payload and MARG H| identification
Number

=g

i

- [ra

1
{135 3 0.5) ¥ 16 MARG Hl sensors
(Total of 224 tyytas)
Total: 232 Bytes

The data format used by the CIU shown in Table 1
consists of 232-byte words, which include the data from
all sixteen MARG III sensors and the necessary
communication overhead. In the event that one or more
MARG HI sensors are not connected or that they transmit
incorrect data, the FPGA replaces the respective bits with
Zeros in order to keep a constant transmission rate.

The data for each of the sixteen MARG III sensors
consists of the measwrements from the three magnetic
(Mx, My, Mz), the three angular rate (Rx, Ry, Rz}, and
the three acceleration sensors (Ax, Ay, Az) onboard the
MARG IH sensor {nine channels for each sensor). Each
channel! (transmitted in the order of Rx, Ry, Rz, Ax, Ay,
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Az, Mx, My, Mz} occupies one and a half byte, giving a
total of 13.5 bytes of data for each MARG I sensor. An
identification number of a half a byte is added to
associate the data received with the corresponding
MARG IH sensor. This ID number leads to a total
payload of 14 bytes for each MARG Il sensor.

An 802.11b wireless LAN OEM module Airborne
from DPAC Technologies [23] was used for wireless
transmission. The Airbome unit is interfaced to the TI
microprocessor onboard the CIU using UART. The data
transmission rate is 232 kbps.

IV, HUMAN AVATAR ANDY

Avatar Andy was developed to allow networked
viewing of human body metion using a web browser. It
is a cartoon-type avatar created using the Extended 3D
(X3D) language [18]. It is a modification of the low-
resolution avatar named AndyLow, developed by
Seamless Solutions, Inc. [24]. AndyLow was originally
implemented using the Virtual Reality Modeling
Language (VRML) and follows the H-Anim specification
[19]. It was converted to X3D, an extended version of
VRML [25]. Modification of AndyLow was required due
to the characteristics of orientation estimates produced
from MARG data [25].

The geometries of all limb segments in the AndyLow
avatar are described relative to a single unique reference
frame, located at the center point between the feet. Limb
segments are arranged in a hierarchy radiating from this
reference point with the segments that are closer to the
reference being termed “inboard™ of those that are further
away. Joint rotations for each limb segment must be set
using an orientation that is relative to the reference
frames of each of the more inboard joints. Limb segment
orientation estimates derived from MARG sensor data
are given relative to an Earth fixed reference frame. This
requires that each limb segment be oriented
independently of all other segments. For this reason,
AndyLow was incompatible with the system described
here. To overcome this drawback, each segment’s
geometry was redefined using its own local reference
positien with only a connection point to the parent or
next most inboard segment.

The H-Anim specification [19] defines several levels
of articulation. Highly detailed levels allow for the
individual animation of minor limb segments such as
finger joints. Coarser levels only allow individual
animation of major limb segments such as the upper leg
or Jower arm. Level one articulation (LOA-1) is preferred
for AndyLow. This level offers 18 joints arranged in a
hierarchical human skeleton structure. The MARG
system was designed to track up to 15 individual limb
segments. Avatar Andy fixes the sacroiliac, I_midtarsal
and r_midtarsal joints in order to reduce the total number
limb segments to 15. Figure 4 shows the skeleton



structure of the avatar Andy with numbering used to
represent the joints. Figure 5 shows Andy in a standing
position.

HumanoidRoot : sacrum/pelvis
| _hip : 1_thigh .
| 1knee:l_calf
| 1_ankle : |_hindfoot
| r_hip : 1_thigh
| r_knee:r_calf
| r_ankle : r_hindfoot
jvls 15
| skullbase : skull
|1_shoulder - | upperarm
| L elbow:]_forearm
| 1 wrist : 1_hand
| r_shoulder : r_upperarm
|
I

[0}
[1
[2}
[3)
[4]
(5]
[8]
M
{8
[9]
[10]
(1]
{12]
[13}
[14)

r_elbow : r_forearm
r_wrist : r_hand

Figure 4. Hierarchica! Skeleton Structure of the Avatar
Andy.

Real-time orientation data is supplied to avatar Andy
through a Java Script node. The node contains a TCP
socket for handling control information and commands.
Orientation data is received via a separate UDP socket.
The avatar is thus capable of controlling all its 15 joints
in networked virtual environments (NVES).
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Figure 5. Avatar Andy.
V. CONCURRENT CLIENT-SERVER PROTOCOL

Networking capability was added to the MARG
system in order to produce a flexible system with real-
time data streaming. Therefore, a concurrent client-server
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pregram is developed to provide a network interface to
the system. The concwrent client-server program
receives MARG sensor data through a UDP socket and
delivers the data to the clients on the wide area network
(WAN) simultaneously. Delivering the same motion data
to multiple clients simultaneously is implemented by a
method called Multicasting Using TCP and¢ UDP
Protocol (MUTUP) [25].

Multicasting is the most efficient way of transmitting
information among a large number of group members
spread out over different networks. Reduced network
bandwidth use is the major advantage of using
multicasting protocols. Unfortunately, most routers on
the Internet are not configured for multicasting. A
technique called funneling is used to overcome this
problem. Tunneling is a software solution that rans on
the end point routers/computers and allows multicast
packets to traverse the network by putting them into
unicast packets. MUTUP overcomes the tunneling
problem using shared memory in the server and a unicast
TCP and UDP messages between the server and each
client. The major disadvantage of MUTUP is a limitation
on the number of clients that can be handled by the server
at any time. This limitation is caused by an increase in
load on the CPU and additional memory ¢onsumption for
each client. Low performance or out-of-memory
problems may occur if the server must handle too many
clients,. MUTUP also uses greater network bandwidth
than multicasting because separate update messages must
be sent to cach client. Since a relatively small number of
clients are expected in the MARG project, MUTUP was
chosen as an alternative method to the multicasting
protocol despite its drawbacks.

MUTUP uses shared memory in the server program
for storing the latest motion data. Clients request TCP
connections from the server. The server accepts the
requests and creates a separate thread for handling each
of the connections. The TCP connection is used for
general-purpose communication. The TCP protocol is not
appropriate for data streaming due to increased latency
and overhead. Therefore, a second connection based on
UDP sockets is established between the client and the
server. The server program asks the client to create a
UDP socket and send the IP address and the UDP pon
number of this socket back to the server. The server adds
the IP address and the UDP port number of the client as a
destination for the packets sent by the server program.
To provide the same motion data for all connected clients
simultaneously, a shared memory array that always stores
the latest update is created on the server program. An
updater thread updates this array. All client handler
threads access this array at any time they want. A
diagram of MUTUP is provided in Figure 6.
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V1. TESTING AND EVALUATION

The performance of the individual MARG sensors
was tested first. Each MARG sensor produces nine
components of raw measurement data at the rate of 100
Hz. The raw measurement data are processed by the
filter algorithm [I7] to produce a quaternion
representation of orientation. For plotting purposes,
quaternions are converted to Euler angles (roll ¢, pitch 8
and yaw v). Figure 7 shows the output of the MARG
sensor as it performs a 720° rotation (roll ¢} about its
longitudinal axis. It is seen that the sensor starts from a
zero roll. When the motion starts, the sensor responds
with a lingar rotation toward negative 180°. The plot
displays angles within the range of negative 180° and
positive 180°. Therefore, a sudden transition from
negative 180° to positive 180° appears. In reality, the
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sensor continues to rotate with a constant angular rate
until it reaches a full 720° rotation and then stops. A
slight pitch deviation and an even smaller yaw deviation
are also observed.
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Figure 7. Response of MARG Sensor to 720°Roli Motion.

The real-time performance of the overall tracking
system was evaluated in connection with the human
avatar Andy. Two MARG sensors were attached to an
arm of a user, and connected to the three-channel CIU.
The CIU then wirelessly transmitted the sensor data to a
network-based server computer. The sensor data were
filtered, and the resulting orientation quaternions were
transformed into axis-angle pairs. This transformation
was necessary since the avatar was created using the
X3D language, whick has been standardized to use axis-
angle pairs to represent rotations,

Testing results with the full-bedy avatar were very
successful. With the use of two MARG III sensors, the
avatar followed the motion of the human right arm
exactly. Figure 8 and Figure 9 show two snapshots of the
testing scene. The user moves his arm, and the motion is
followed in real time by the avatar.

VII. CONCLUSION

The paper presents the system components of a body
motion tracking system based on MARG sensor modules
and testing and evaluation results for a prototype three-
sensor system. The components presented include a
Control Interface Unit, a human avatar, and a
Client/Server pretocol for transmitting animation data.
The CIU packages data from up to 16 MARG sensors for
wireless transmission. The Client/Server program
receives MARG sensor data and delivers that data to
multiple clients simultaneously. The avatar allows
networked Viewing of animations produced using MARG
data in real time. Tests of 2 prototype three sensor sysiem
indicate that these components provide the necessary
infrastructure to support a 16 sensor system for full body
tracking.
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